скачать рефераты

скачать рефераты

 
 
скачать рефераты скачать рефераты

Меню

Разработка модели триггерного устройства на базе микросхем типа К564 с последующим использованием выходов скачать рефераты

p align="left">

Составление функциональной схемы триггерного устройства

Рис. 2 Структурная схема триггера.

Проектирование печатной платы

Разработанный триггер реализован на микросхемах серии К564. Размеры посадочных мест под данные микросхемы зависят от габаритных и установочных размеров корпусов микросхем. Исходные размеры взяты по ГОСТ 17467-72.

Все использованные микросхемы реализованы в корпусах типа 301ПЛ14, имеющих следующие размеры:

А

L

a

k

t

6,5

19,5

5,0

3,2

2,5

Счетчик реализован в корпусе типа 201.16-6

А

L

a

k

t

6,5

19,5

5,0

3,5

2,5

Параметры сопряжения микросхем серии К564:

Параметр

ИС

К564 (UCC=5В)

UOL,В

0,01

UOH,В

4,99

IIL,мА

5*10-5

IIH,мкА

0,05

IOL,мА

0,01…3

IOH,мкА

0,01…1,6

UCC,В

3…15

UIL,В

1,5

UIH

3,5

Технологическая часть

  • Общие сведения о системе P-CAD
    • Система P-CAD представляет собой интегрированный пакет программ, предназначенный для проектирования многослойных печатных плат (ПП) радиоэлектронных средств (РЭС). Она адаптирована к операционной среде Windows и использует все настройки и возможности последней.
    • P-CAD включает в себя следующие программные модули: P-CAD Library Executive, P-CAD Schematic, P-CAD PCB, P-CAD Autorouters, Symbol Editor, Pattern Editor, InterPlace PCS, Relay, Signal Integrity.
    • Утилита Library Executive (Администратор библиотек) состоит из программы Library Manager (Менеджер библиотек), редактора символов элементов Symbol Editor и редактора посадочных мест Pattern Editor электрорадиоэлементов (ЭРЭ) на ПП.
    • P-CAD Schematic -- графический редактор электрических схем. Он предназначен для разработки электрических принципиальных схем и может применяться для создания условных графических обозначений (УГО) отдельных ЭРЭ (файлы с расширением .sch).
    • P-CAD PCB -- графический редактор ПП. Предназначен для проектирования конструкторско-технологических параметров ПП. К ним относятся: задание размеров ПП, ширина проводников, величина зазоров, размер контактных площадок, диаметр переходных отверстий (ПО), задание экранных слоев, маркировка, размещения ЭРЭ, неавтоматическая трассировка проводников и формирование управляющих файлов технологическим оборудованием.
    • P-CAD Autorouters предназначен для автоматической трассировки проводников ПП. Включает два автотрассировщика: программу Quick Route для проектирования рисунка ПП не очень сложных электрических схем и бессеточный трассировщик Shape-Rased Router, предназначенный для проектирования многослойных ПП с высокой плотностью расположения ЭРЭ.
    • Symbol Editor -- редактор символов элементов (файлы с расширением .sym). Предназначен для создания условных графических обозначений символов ЭРЭ электрических схем.
    • Pattern Editor -- редактор посадочных мест (файлы с расширением .pat). Предназначен для разработки посадочных мест для конструктивных ЭРЭ на ПП.
      • Создание условно-графического обозначения элементов

Создание условно-графического обозначения элементов производится в соответствие с ГОСТ. Для автоматизации данного этапа разработки используется редактор Symbol Editor, входящий в пакет программ P-Cad 2002.

Для реализации спроектированного триггера были созданы следующие компоненты:

- 6ИЛИ - для К564ЛН3:

Рис 3. УГО элемента К564ЛН3.

- 2И-НЕ - для К564ЛА7:

Рис 4. УГО элемента К564ЛА7.

- 3И-НЕ для К564ЛА9:

Рис 5. УГО элемента К564ЛА9.

- 4И-НЕ для К564ЛА8:

Рис 6. УГО элемента К564ЛА8.

- 6НЕ для К564ЛН2:

Рис 7. УГО элемента К564ЛН2.

  • Разработка посадочного места элемента
    • Графический редактор P-CAD Pattern Editor имеет набор команд, позволяющих создавать и редактировать посадочные места для установки ЭРЭ на печатных платах. Программа работает с файлами отдельных посадочных мест (.pat) и библиотек (.lib).
      • Посадочное место (ПМ) -- это комплект конструктивных элементов печатной платы, предназначенный для монтажа отдельного ЭРЭ. В него входят в различных сочетаниях контактные площадки (КП), металлизированные отверстия, печатные проводники на наружных слоях и гладкие крепежные отверстия. Кроме этого ПМ может включать в себя параметры защитной и паяльной масок, элементы маркировки и графические элементы сборочного чертежа.

Каждый из этих элементов должен располагаться в специальном слое. Для этого в Pattern Editor предусмотрена возможность смены текущего слоя печатной платы. На этом этапе были созданы посадочные места для микросхем К564 со штыревыми выводами. Посадочные места для микросхем имеют следующий вид:

Рис 8. Пример штыревого посадочного места.

  • Создание библиотеки компонентов
    • При проектировании печатных плат необходимы сведения о схемных образах ЭРЭ и посадочных местах для них. Программы размещения и трассировки должны иметь информацию о соответствии каждого конкретного вывода условного графического обозначения выводу в корпусе элемента. В версии P-CAD 2001 эта работа выполняется автоматически программой Library Executive (Администратор библиотек). Для этого соответствующие данные заносятся в так называемые упаковочные таблицы, указывающие основные характеристики используемых ЭРЭ. В программе предусмотрены эффективные приемы работы, аналогичные приемам программных продуктов Microsoft Office. Эта программа не является графическим редактором. Она лишь сводит введенную ранее графическую информацию в единую систему -- библиотечный элемент, в котором сочетаются несколько образов представления элемента: образ на схеме, посадочное место и упаковочная информация.
      • Для создания нового компонента необходимо запустить программу и выполнить команду Component New, а затем выбрать нужную библиотеку, в которую ранее были записаны УГО и ПМ. В появившемся окне необходимо указать всю требуемую информацию по создаваемому компоненту. Далее нужно выбрать посадочное место для создаваемого компонента и указать УГО, которое будет использоваться для обозначения на схемах вентилей данного компонента. Кнопки «Pins View», «Pattern View» и «Symbol View» используются для открытия окон редактирования соответствующих параметров компонентов. Число вентилей в данной микросхеме указывается в поле «Number of Gates», а префикс нумерации компонента - в поле «Refdes Prefix». Для создания таблицы выводов «Pins View» необходимо заполнить таблицу информацией, взятой из технической документации для текущего компонента.
      • Расшифровка таблицы:
      • 1. В столбцы Pad# (номера контактных площадок корпуса компонента) и Pin Des (позиционные номера выводов компонентов на схеме) вносится одна и та же информация о порядке их нумерации.
      • 2. В столбце Sym Pin# указывается номер вывода символа в соответствующей секции символа компонента.
      • 3. В столбец Pin Name вводят имена выводов в каждой секции.
      • 4. В столбцы Gate Eq и Pin Eq вводят данные о логической эквивалентности секций и выводов соответственно.
      • 5. В столбце Gate # указывается номер секции (вентиля), в которую назначен вывод символа.
      • 6. В столбце Elec Type указывается тип вывода, используемый при поиске ошибок в схемах электрических принципиальных:
      • · Unknown -- вывод, не имеющий определенного типа;
      • · Passive -- пассивный вывод;
      • · Input -- входной вывод;
      • · Output - выходной вывод;
      • · Power -- вывод питания или «земли».
      • После выполнения всех указанных выше операций для создания интегрированного образа компонента необходимо выполнить команду Component/Validate для проверки согласованности всех данных компонента и, в случае отсутствия ошибок, сохранить компонент в текущей библиотеке командой Component Save As.
      • Рис.9 Пример окна создания компонента.
      • Для функционирования триггера были созданы библиотечные элементы микросхем и других необходимых элементов для схемы включения, которые были рассчитаны и выбраны в зависимости от количества микросхем нашего триггерного устройства.
      • Моделирование триггера. Временная диаграмма работы
      • Для моделирования работы триггера необходимо:
      • 1. Создать библиотеку компонентов.
      • 2. Создать и добавить в нее моделируемые компоненты.
      • 3. В меню «Edit» программы «Library Executive» выбрать пункт Component Attr».
      • Рис 10. Пример описания свойств элемента.
      • 4. Последовательно добавить и заполнить поля таблицы.
      • 5. Поле SimType должно содержать значение SIMCODE(A) для цифровых устройств.
      • 6. Поле SimModel должно содержать название модели устройства.
      • 7. Поле SimFile содержит путь к файлу модели. Его можно указать с использованием макроса {model_path}, это позволит сделать путь относительным.
      • 8. Поле SimPins содержит информацию о ножках компонента. Она вводится в таком формате:
      • 9. <номер_вентиля1>:[<пин1> <пин2><пин3>…<>]…<номер_вентиляN>:[<пин1> <пин2> <пин3>…<>]
      • 10. Поле SimNetlist может содержать ключи: %D - описатель устройства (Device designator);
      • 11. %M - имя модели. Между ними вставляется две пары квадратных скобок, в которых указываются номера ножек, указанных в поле SimPins по порядку. Во второй паре квадратных скобок указываются те же ножки, но пропускается вторая и добавляются номера ножек выходов.
      • 12. Затем последовательно добавляются поля с именами SimField1, 2, 3 и т.д. В них указываются следующие данные:
      • 13. Propagation = - время распространения сигнала;
      • 14. Loading и Drive = - нагрузочная способность ножек компонента;
      • 15. Current = - потребляемый ток;
      • 16. PWR Value = - напряжение питания;
      • 17. GND VALUE = - напряжение «нуля»;
      • 18. VIL Value = - входное напряжение уровня «нуля»;
      • 19. VIH Value = - входное напряжение уровня «единицы»;
      • 20. VOL Value = - выходное напряжение уровня «нуля»;
      • 21. VOH Value = - выходное напряжение уровня «единицы».
      • Для работы модели компонента необходимо создать два файла. Первый файл (с расширением txt) содержит в себе текст модели компонента, второй - реквизиты модели.
      • Для запуска симуляции необходимо создать принципиальную схему моделируемого устройства:
      • Рис 11. Принципиальная электрическая схема моделируемого триггера.
      • подключить к входам источники сигналов (для каждой цепи задать порт), в пункте меню Simulate выбрать Setup. После этого запустится симулятор и откроется окно настроек моделирования. Для начала симуляции необходимо задать необходимые настройки и нажать кнопку Run Analisys.
      • Рис 12. Окно настроек моделирования.
      • После чего модуль Mixed Signal Circuit Simulator выполнит компиляцию схемы и, если не будет обнаружено ошибок, на экран будет выведена временная диаграмма:
      • Рис 13. Временная диаграмма работы триггера.
      • Моделирование дополнительного элемента-счетчика К564ИЕ9
      • Счетчики
      • Счетчиком называется ОЭ (электронный узел), обеспечивающий выполнение микрооперации счета сигналов (импульсов), поступающих на его вход.
      • Счетчики выполняются на триггерах и логических элементах, количество и тип которых определяется назначением счетчика. В общем случае счетчик имеет М устойчивых состояний. Под действием входных сигналов счетчик, установленный в начальное состояние, изменяет его и сохраняет до тех пор, пока на вход не поступит следующий сигнал. Каждому состоянию счетчика соответствует порядковый номер 0, I. 2, ..., М. Если в момент времени ti счетчик находится в i-м состоянии, то оно определяет число поступивших на счетчик сигналов. Таким образом, счетчик осуществляет преобразование числоимпульсного (унитарного) кода в позиционный двоичный код.
      • При подаче на вход счетчика М считываемых сигналов, на выходе его возникает сигнал переполнения, а счетчик возвращается в начальное состояние, т.е. счет единичных сигналов осуществляется в нем по модулю М (или с периодом счета Тn = М.)
      • В ЭВМ счетчики используются для образования последовательности адресов команд, для счета количества циклов выполнения операций, в преобразователях информации из непрерывной формы в дискретную и т.п.
      • В зависимости от способа кодирования различают счетчики с позиционным (единичным, двоичным, троичным и т.д.), комбинированным позиционным и непозиционным (код Грея) кодированием. В счетчиках с позиционным кодированием числовое выражение текущего состояния определяется формулой:
      • yi = wкQк
      • где n - количество разрядов;
      • wк - вес к-го разряда;
      • Qк - логическое значение разряда, определяемое состоянием соответствующего триггера.
      • На практике в основном используются счетчики с позиционным кодированием.
      • По целевому назначению счетчики бывают простые (суммирующие и вычитающие) и реверсивные. На простые счетчики сигналы поступают с одним знаком, т.е. эти счетчики имеют переходы от состояния к состоянию только в одном направлении. Суммирующий счетчик предназначен для выполнения счета в прямом направлении, т.е. для сложения. С подачей очередного единичного сигнала на вход показание счетчика увеличивается на единицу. Вычитающий счетчик предназначен для выполнения счета единичных сигналов в режиме вычитания. Каждый счетный сигнал, поступивший на вход такого счетчика, уменьшает его показания на единицу. Реверсивные счетчики предназначены для работы в режиме сложения и вычитания.
      • В зависимости от способа организации счета счетчики подразделяются на асинхронные и синхронные. В асинхронных счетчиках сигнал от каскада к каскаду передается естественным путем в различные интервалы времени в зависимости от сочетания входных сигналов. В синхронных счетчиках сигналы от каскада к каскаду передаются принудительным путем при помощи тактовых сигналов,
      • По способу организации цепей переноса между каскадами различают счетчики с последовательным, сквозным (параллельным), групповым и частично групповым переносом.
      • Основными характеристиками счетчика являются:
      • - модуль счета - период счета или коэффициент пересчета;
      • - разрешающая способность;
      • - время регистрации;
      • - емкость счетчика.
      • Модуль счета (М) характеризует число устойчивых состояний счетчика, т.е. предельное число входных сигналов которое может сосчитать конкретный счетчик.
      • Разрешающая способность - это минимально допустимый период следования входных сигналов, при котором еще обеспечивается надежная работа счетчика. Чем больше частота поступления счетных сигналов, тем больше быстродействие счетчика.
      • Время регистрации (Тр) - интервал времени между моментами поступления входного сигнала и окончания самого длинного переходного процесса в схеме счетчика.
      • Емкость счетчика (N) определяется максимальным числом единичных сигналов, которое может быть зафиксировано на счетчике. Эта характеристика зависит от основания системы счисления и числа каскадов. (N= 2n).
      • Счетчик К564ИЕ9
      • Микросхема К564ИЕ9-- четырехразрядный счетчик-делитель на восемь Джонсона.
      • Назначение выводов ИС К564ИЕ9
      • Условно-графическое обозначение ИС К564ИЕ9:
      • Основой счетчика Джонсона является кольцевой сдвигающий регистр, у которого имеется одна перекрестная связь, обеспечивающая инверсную перезапись информации в один из разрядов регистра при прямой перезаписи информации во всех остальных разрядах. Важными свойствами счетчиков Джонсона являются их высокое быстродействие и простота дешифрации состояний. Быстродействие определяется временем установки одного разряда, а дешифрация состояний осуществляется с помощью двухвходовых ЛЭ И.
      • В качестве одного разряда счетчика используется тактируемый M-S-триггер типа D с непосредственным входом установки L. Триггер состоит из двух триггеров: основного М и вспомогательного S. Запись информации в триггер осуществляется последовательно, сначала в основной (при отсутствии тактового импульса), затем во вспомогательный (по тактовому импульсу). Счетчик осуществляет счет от положительного фронта тактового сигнала С при напряжении низкого уровня на входе разрешения Е. При высоком уровне напряжения на входе Е происходит блокировка счета. Счетчик осуществляет счет также от отрицательного фронта сигнала Е при высоком уровне напряжения по входу С.
      • Функциональная схема ИС:
      • В процессе работы счетчика на выходе переноса CR формируется последовательность импульсов со скважностью Q=2 и частотой, равной /вк/8. Обнуление счетчика происходит при подаче уровня Н на вход установки нуля R, при этом выходы 0 и CR принимают состояние высокого уровня, а все остальные выходы --состояние низкого уровня. При работе микросхемы сначала происходит последовательная запись уровня Н во все разряды, начиная с первого, затем первый разряд переходит в состояние L и происходит обратный процесс последовательное заполнение всех разрядов счетчика уровнем L. Дешифрация состояния счетчика производится с помощью восьми двухвходовых схем И -- НЕ, при этом напряжение Н имеется всегда лишь на одном из выходов 0--7. В ИС К564ИЕ9 используется восьмеричный код Джонсона, который отличается от двоичного и двоично-десятичного кода тем, что, когда счетчик переходит к следующему логическому состоянию, меняется только одна логическая переменная.
      • Таблица истинности ИС К564ИЕ9:

Для счетчика создаётся, как и для всех элементов, УГО, посадочное место и библиотечный элемент. Посадочное место будет несколько иным из-за количества ножек = 16.

Рис. 14 Штыревое посадочное место для счетчика ИС К564ИЕ9

При моделировании данного счетчика в качестве входных сигналов С, Е, R используются значения C, Q2, HR2.

Временные диаграммы работы счетчика будут иметь вид:

Рис 15. Временные диаграммы работы счетчика.

  • Разработка принципиальной электрической схемы
    • Графический редактор P-CAD Schematic предназначен для разработки электрических принципиальных схем с использованием условных графических обозначений элементов. При этом УГО ЭРЭ могут извлекаться из соответствующей библиотеки или создаваться средствами самой программы.
      • Если не разрабатывается узел печатной платы, то при вычерчивании схем берутся УГО элементов, не связанные с их конструктивной базой. Такая схема может использоваться как иллюстративный материал. При возникновении необходимости разработки ПП ее надо дополнить соответствующей конструкторско-технологической информацией.
      • При выполнении проекта с разработкой узла ПП схема должна формироваться из библиотечных элементов, которые включают полную информацию о конструктивных особенностях ЭРЭ и их посадочных местах на ПП.
      • Рис 16. Принципиальная электрическая схема.
      • Комплекс временных диаграмм работы триггерного устройства и счетчика К564ИЕ9:
      • Рис 15.Временные диаграммы работы триггерного устройства и счетчика К564ИЕ9.
      • Проектирование печатной платы
      • Графический редактор PCAD РСВ предназначен для выполнения работ, связанных с технологией разработки и конструирования узлов печатных плат. Он позволяет упаковывать схемы на плату, задавать размеры ПП, ширину проводников и величину индивидуальных зазоров для разных проводников, задавать размеры контактных площадок и диаметры переходных отверстий, экранные слои. Редактор позволяет выполнять маркировку ЭРЭ, их размещения, неавтоматическую трассировку проводников и формировать управляющие файлы для технологического оборудования. Система PCAD 2002 включает две программы автоматической трассировки печатных проводников, которые вызываются из редактора PCAD PCB. Это трассировщики QuickRoute и ShapeBased Router.
      • Программа QuickRoute реализует сеточную технологию (Grid Based) и пригодна для быстрой разработки не очень сложных ПП, включающих не более 4х слоев металлизации. По сравнению с другими эта программа менее эффективна и работает только в дюймовой системе.
      • Трассировщик ShapeBased Router основан на бессеточной технологии (ShapeBased) и реализует принципы оптимизации нейронных сетей. Программа предназначена для трассировки многослойных ПП (до 30 слоев) с высокой плотностью размещения ЭРЭ и реализует такие алгоритмы, которые стремятся получить 100% трассировки соединений. Работает программа в автоматическом, интерактивном и ручном режимах.
      • Пример трассировки при помощи трассировщика QuickRoute:
      • Рис 18. Пример трассировки при помощи трассировщика QuickRoute.
      • Литература
      • Преснухин Л.Н., Воробьёв Н.И., Шишкевич А.А. Расчёт элементов цифровых устройств. М., Высшая школа, 1991.
      • Угрюмов Е.П. Проектирование элементов и узлов ЭВМ. М., Высшая школа, 1987.
      • Иванов С.Р., Черников А. С. Синтез статических триггеров. МУ к КР по курсу “Схемотехника ЭВМ и систем". М., 1987.
      • Табарин Б.В., Якубовский С.В., Справочник по интегральным микросхемам. М., «Энергия», 1980
      • Пухальский Г. И., Новосельцева Т. Я. Проектирование ДУ на интегральных микросхемах. М., «Радио и связь», 1990

Страницы: 1, 2, 3