скачать рефераты

скачать рефераты

 
 
скачать рефераты скачать рефераты

Меню

Разработка компонентов инфраструктуры сервисного обслуживания встроенной памяти гибкой автоматизированной системы на кристалле скачать рефераты

p align="left">- Flash-память типа NOR - в производстве находятся микросхемы Flash-памяти: индустриального стандарта с различным питанием, с расширенной архитектурой для различных областей применения, микросхемы с разнородной памятью и микросхемы Flash-памяти семейства " LightFlash ";

- Flash-память типа NAND - новое направление в производстве микросхем памяти;

- SRAM - асинхронные маломощные микросхемы памяти типа SRAM с различным питанием и быстродействием;

- NVRAM - имеются различные решения для SRAM с аварийным батарейным питанием, которые классифицируются как супервизоры, Zeropower, Timekeeper и часы реального времени с последовательным интерфейсом (Serial RTC );

- PSM - в соответствие со стратегическим направлением создания «систем на кристалле», разрабатываются и производятся микросхемы программируемых систем памяти, которые обеспечивают комплексное системное решение памяти для микроконтроллеров и разработок на сигнальных процессорах (DSP);

- Smartcard - в наличии большой ассортимент микросхем для Smartcard и систем обеспечения безопасности.

Большое число видов и типов микросхем памяти, производимых сегодня, не позволяет осуществить их подробное освещение в рамках одной дипломной работы. Поэтому здесь я попытаюсь остановиться только на основных особенностях некоторых семейств микросхем памяти, представленных на рис. 1.1.

Рисунок 1.1 - Виды и основные серии выпускаемых микросхем SoC-памяти

2. разработка компонентов инфраструктуры сервисного обслуживания SoC-памяти ГАС

2.1 Принципы создания сервисного обслуживания систем на кристалле

Одной из важных и первостепенных задач микроэлектроники, является создание универсальных микропроцессорных SoC-систем на кристалле. Такие сложные ИС класса SoC, обычно, состоят из трех основных цифровых системных блоков:

- процессор,

- память,

- логика.

Процессорное ядро реализует поток управления, когда каждой управляющей программой однозначно устанавливаются последовательности выполнения операций обработки данных, что позволяет задавать один из возможных алгоритмов работы всей ИС. Память используется по ее прямому назначению - хранение кода программы процессорного ядра и данных. И, наконец, логика используется для реализации специализированных аппаратных устройств обработки и прохождения данных, состав и назначение которых определяются конечным приложением - потока данных.

Реальная система на кристалле содержит как минимум все три перечисленных блока, что исключает применение многочисленных отдельных ИС и реализацию интерфейсов связи между ними. Причем однокристальное конфигурируемое или программируемое решение, очевидно, является здесь более предпочтительной альтернативой, так как допускает оперативное изменение своей внутренней аппаратной структуры и конечного предназначения как на этапе производства, так и в полевых условиях, непосредственно в проекте. Такие ИС были отнесены к группе изделий системного уровня интеграции, но получили другое название - Configurable System on a Chip или CSoC. Поскольку термин CSoC не стандартизован, то существуют и другие названия изделий этого класса - System on Programmable Chip (SoPC), Programmable System on a Chip (PSoC) или просто SoC, что определяется вкусом и желаниями конкретного производителя микросхем. В данном разделе, будем придерживаться термина CSoC.

Конфигурируемый процессор реализует изделие, которое может быть "подстроено" для конкретного использования в потоке управления. Например, изменяемый набор инструкций процессорного ядра, добавление/исключение аппаратного умножения, программируемое количество состояний внутреннего конвейера и т.д.

Всё это может быть оптимизировано для каждого конечного приложения. Конфигурируемые процессоры предоставляют пользователям необходимые черты и особенности без дополнительных капиталовложений.

Результатом является оптимизированное, высокопроизводительное и дешевое сервисное решение для конкретной задачи. Но для того, чтобы достичь приемлемого значения величины "цена/кристалл", конфигурируемый процессор должен быть реализован как ASIC. Поэтому конечный продукт заведомо предполагает большие объемы производства для компенсации NRE и инженерного труда. Собственно, все современные микропроцессоры и микроконтроллеры, выпускаемые как стандартные изделия в массовых объемах, могут быть как минимум отнесены к группе процессоров с частично конфигурируемой периферией. Компромисс является в этом случае приемлемым: максимальная производительность и минимальная стоимость микросхемы для специфического конечного приложения при значительных начальных финансовых и инженерных инвестициях.

Конфигурируемые процессоры также требуют специализированного набора средств поддержки разработок для создания программного кода проекта. Под специализацией здесь понимается определенный уровень детализации и ориентации под уникальные особенности конечного приложения. При этом популярные средства поддержки, как правило, уже отобраны разработчиками и являются как бы "рафинированным" набором того, что стоит использовать.

Конфигурируемые системы на кристалле реализуют интегральные устройства, объединяющие встроенный процессор, программируемую логику, память и прочие вспомогательные ресурсы и блоки на одном-единственном кристалле. При этом все эти блоки соединяются между собой внутри кристалла с помощью оптимизированного интерфейса. Ключевой особенностью CSoC является то, что процессор выполнен в виде отдельного технологически реализованного аппаратного узла и не размещается в массиве программируемой логики. Это позволяет получить производительность, сравнимую с ASIC, и избежать при этом дополнительных вопросов, например, насколько удачно размещена память, насколько эффективно она работает и т.п. Кроме того, такая аппаратно реализованная память, обычно, является выверенной популярным ядром индустриального стандарта с большим количеством доступных сервисных средств поддержки разработок.

2.2 Формирование системы сервисной идентификации SoC-памяти

На завершающей стадии разработки ГАС, для замены масочной ROM, как правило, используется память типа OTP и EPROM с ультрафиолетовым стиранием, удобная тем, что она достаточно легко перепрограммируются.

Выпускаемые микросхемы обладают емкостью от 256 кбит до 64 Мбит при питании 5 и 3 В, достаточным быстродействием, различными корпусами, в том числе и для поверхностного монтажа. Организация устройств памяти может быть типа x 8, x 16 и x 8/ x 16. Расшифровка идентификации микросхем памяти вида OTP и UV EPROM приведена на рис. 2.1.

Рисунок 2.1 - Система идентификации SoC-памяти типа OTP и UV EPROM

Набор продукции включает стандартные микросхемы с питанием 5 В и 3,3 В, усовершенствованные микросхемы семейства Tiger Range с питанием 3 В (2,7-3,6 В) и микросхемы нового семейства FlexibleROM ™.

Микросхемы этих типов памяти доступны в FDIP керамических корпусах с окошком и PDIP пластиковых двурядных корпусах, а также в корпусах PLCC и TSOP для поверхностного монтажа.

Для низковольтной серии Tiger Range использована новейшая технология OTP и UV EPROM. Структурные усовершенствования, связанные с толщиной основных слоев, позволили значительно улучшить электрические характеристики. Уменьшение на 25% толщины оксидного слоя затвора позволило снизить пороговое напряжение ячейки и увеличить скорость выборки при питании от 2,7 В.

Для улучшения электрических характеристик, при первом сервисном обслуживании, рекомендуется заменять “V” серию с питанием 3 - 3,6 В на серию “ W ” - Tiger Range, которая имеет лучшие характеристики при питании 2,7 - 3,6 В.

Временные параметры для серии Tiger Range гарантируются двойным тестированием микросхем при напряжении 2,7 В и 3 В. Время доступа при питании 2,7 В маркируется на микросхеме и более быстрое время доступа специфицируется в описании. Времена доступа для напряжения питания выше 2,7 В являются рабочими.

Семейство UV и OTP EPROM Tiger Range характеризуется сверхмалым потреблением, высокой скоростью работы и, одновременно, быстрым доступом с коротким временем программирования. Время программирования микросхем одинаково как для пословного, так и побайтного режимов программирования. Для самых последних микросхем с плотностью 4 Мб и 8 Мб скорость программирования доведена до 50 мкс на слово или байт.

Микросхемы низковольтной серии Tiger Range полностью совместимы по штырькам со стандартной серией 5 В UV и OTP EPROM . Это гарантирует их полное соответствие для приложений, в которых микропроцессорное питание заменяется с 5 В на 3 В.

2.3 Инструкции сервисного обслуживания SoC-памяти

Технология в отношении EPROM непрерывно совершенствуется. Новые перспективы открываются с внедрением новой архитектуры микросхем памяти, основанной на использовании технологии многоразрядной ячейки памяти для получения высоких плотностей записи, начиная с емкости в 64 Mбит. Кроме того, каждая новая разработка содержит несколько фотолитографических новшеств, улучшающих электрические характеристики микросхем.

На данном этапе открылись новые возможности поставок микросхем памяти типа PROM (programmable ROM) / RPROM (re-programmable ROM). Эти микросхемы выпускаются в трех рабочих температурных диапазонах: коммерческом (от 0 до + 70° C), индустриальном (от -40 до + 85° C) и военном (от -55 до + 125° C). Кроме того, некоторые компоненты изготавливаются по стандарту для военного назначения (SMD), в том числе и EPROM.

Самой последней разработкой в области электрически программируемых ПЗУ является семейство FlexibleROM ™, которое может использоваться как простая замена для любого ПЗУ. Это одноразовое программируемое семейство, изготавливаемое по 0.15 мкм технологии, доступно потребителю с начальной емкостью памяти в 16 Mбит. Новое семейство микросхем памяти "FlexibleROM " относится к типу энергонезависимой памяти и предназначено для хранения программного кода. "FlexibleROM" - идеально подходит для использования вместо масочного ПЗУ (MaskROM) и перехода от Flash-памяти на ПЗУ, после отладки программы, если в дальнейшем не планируется изменения программного кода.

Благодаря технологии, основанной на Flash, время программирования также существенно уменьшено. Микросхемы FlexibleROM обеспечены типовой способностью многословной программы с большим потоком данных, что позволяет программировать устройство с емкостью 64 Mбит всего за девять секунд.

Еще одним преимуществом по сравнению с другими однократно-программируемыми ПЗУ является высокая производительность программирования, поскольку 100% функциональных возможностей массива памяти проверяются в ходе тестирования.

Микросхемы семейства памяти FlexibleROM используют питающее напряжение от 2,7 В до 3,6 В для операций чтения и от 11,4 В до 12,6 В для программирования. Устройства имеют 16-разрядную организацию, по умолчанию при включении питания устанавливается режим памяти "Чтение", так что они могут читаться как ПЗУ (ROM) или ЭПЗУ (EPROM).

2.4 Система сохранения параметров сервисного обслуживания

Последовательная энергонезависимая память - наиболее гибкий тип долговременной энергонезависимой памяти, которая обеспечивает возможность записи вплоть до байтового уровня, без необходимости стирания данных перед записью нового значения. Это делает их идеальными для хранения параметров.

Семейства последовательной Flash-памяти имеют возможность “секторного стирания / страничной прошивки” и “страничного стирания / страничной прошивки". Это стало возможно благодаря более тонкой мелкоячеистости памяти по сравнению со стандартной Flash-памятью, характеристика зернистости которой не соответствует характеристике байтового уровня последовательного ЭППЗУ.

Электроника управления исполнительными устройствами ГАС, а также рынка компонентов компьютеров и периферии - основные потребители микросхем долговременной памяти.

В этом году для EEPROM компанией используется 0.35 мкм технология производства, что позволило довести емкость памяти до 1 Мбит в соответствие с потребностями рынка. В тоже время технология изготовления последовательной Flash-памяти достигла уровня 0.18 мкм и появилась возможность производства и этого вида памяти полностью в соответствии с рыночными запросами.

Ассортимент микросхем последовательной энергонезависимой памяти включает набор схем емкостью от 256 бит до 16 Мбит. Все микросхемы памяти обеспечены описаниями, примерами по применению и модельными файлами, что делает их удобными в использовании. По напряжению питания микросхемы последовательной энергонезависимой памяти ST доступны в пяти диапазонах : от 4,5 В до 5,5 В; от 2,5 В до 5,5 В; от 2,7 В до 3,6 В; от 1,8 В до 5,5 В и от 1,8 В до 3,6 В.

Проектная износостойкость EEPROM - более миллиона циклов перезаписи с сохранностью данных в течение более чем 40 лет. Микросхемы производятся в различных корпусах, включая традиционные PSDIP, TSSOP, SO, а также современного типа LGA и SBGA (тонкопленочные). Кроме того, имеется возможность поставки микросхем в упаковках на барабане и в не распиленном виде.

Разработан широкий диапазон высококачественной последовательной памяти EEPROM, с плотностью от 1 кб до 1 Мб, с тремя промышленными стандартами последовательных шин (400 кГц, 2-проводная шина с плотностью до 1 Mбит, быстрая 1 MГц шина типа MICROWIRE с плотностью от 1 кбит до 16 кбит и сверхбыстрая 10 MГц шина типа SPI с плотностью до 256 кбит), с питанием 5 В; 2,5 В и 1,8 В. Система записи обозначений последовательной EEPROM для типовых корпусов показана на рис 2.2. Следует заметить, что для не распиленных пластин и микросхем в барабанах обозначения могут несколько отличаться.

Микросхемы последовательной EEPROM, рекомендуются для использования в приложениях, не требующих высокой шинной скорости для накопления и хранения данных, но желающих иметь возможность побайтового и страничного чтения/записи. Шина работает с тактовой частотой 400 кГц при напряжении питания до 1,8 В. Последовательная EEPROM выпускается в различных корпусах: пластиковых DIP с двухрядным расположением выводов, SO, MSOP, TSSOP для поверхностного монтажа и SBGA с матрицей шарообразных выводов.

Рисунок 2.2 - Система записи обозначений микросхем памяти ST типа EEPROM

Микросхемы памяти EEPROM с шиной SPI предпочтительны для приложений с высокоскоростной передачей информации по шине. С появлением микросхем со скоростью от 5 МГЦ до 10 МГц и емкостью от 512 кбит до 1 Мбит, эта шина быстро завоевывает популярность на рынке микросхем памяти. EEPROM с шиной SPI имеют вход HOLD ("Захват"), который позволяет сохранять синхронизацию при паузах в процессе передачи последовательностей данных по шине. Кроме того, имеется специальный управляющий вход W для защиты матрицы памяти от записи.

Микросхемы памяти EEPROM с шиной MICROWIRE доступны с емкостью от 256 бит до 16 кбит. В настоящее время шина MICROWIRE широко применяется во многих современных устройствах, для которых требуется достаточно высокая скорость передачи данных без использования внешних шин адреса/данных.

Семейство микросхем высокоскоростной низковольтовой последовательной Flash-памяти имеет четырехпроводный SPI-совместимый интерфейс, что позволяет использовать Flash-память вместо последовательной EEPROM. Изготавливаемые по высокоизносостойкой КМОП Flash-технологии, данные микросхемы обеспечивают, по крайней мере, 10000 циклов перепрограммирования на сектор с сохранностью данных свыше 20 лет.

В настоящее время доступны два дополняющих друг друга подсемейства последовательной Flash-памяти с возможностью стирания сектора или страницы:

44

Страницы: 1, 2, 3, 4