скачать рефераты

скачать рефераты

 
 
скачать рефераты скачать рефераты

Меню

Разработка цифрового измерителя кровяного давления на микроконтроллере MC68HC908JL3 скачать рефераты

Разработка цифрового измерителя кровяного давления на микроконтроллере MC68HC908JL3

МО РФ

Новосибирский колледж электроники

КУРСОВОЙ ПРОЕКТ

По дисциплине микроконтроллеры

На тему: “Разработка ЦИФРОВОГО ИЗМЕРИТЕЛЯ КРОВЯНОГО ДАВЛЕНИЯ на микроконтроллере MC68HC908JL3”

Выполнил: Мамаев А.С.

Гр. 9Вт-454

Проверил: Брикман А.И.

2003

Содержание

Введение

1. Техническое задание

2. Выбор и обоснование элементной базы

2.1 Выбор микроконтроллера

3. Структурная схема устройства

3.1 Состав и назначение отдельных элементов

3.2 Анализ ресурсов ввода-вывода

4. Структура алгоритма программы

4.1 Обобщённая БСА

4.2 Рабочая БСА

4.2.1 БСА основной программы.

4.2.2 БСА обработчика прерывания от таймера

4.2.3 БСА обработчика прерываний от АЦП

4.2.4 БСА подпрограммы табличной перекодировки напряжение в давление

4.2.5 БСА подпрограммы вывода числа на индикацию

4.2.6 БСА подпрограммы перевода числа в BCD формат

5. Принципиальная схема устройства

Заключение

Список литературы

Приложение

Введение.

С развитием микроэлектронной индустрии, а в частности с развитием микроконтроллеров, появилась возможность делать малогабаритные и сравнительно дешёвые электронные изделия.

На сегодняшний день, в каждой аптеке и специализированных магазинах, можно увидеть в продаже различные медицинские приборы. Например, цифровой термометр, цифровой измеритель давления крови и многое другое.

Появление таких приборов на прилавках магазинов, обусловлено прогрессивным развитием цифровой техники, в том числе и микроконтроллерных систем.

Микроконтроллеры позволяют меньше использовать типовые элементы в разработках, т.к. практически всё можно сделать программными средствами, тем самым электронные изделия сделанные на базе микроконтроллеров являются малогабаритными и стоят сравнительно не дорого.

В настоящее время, большая часть медицинских приборов построенна на цифровой логике, главным элементом которой является микроконтроллер, и индикация происходит на цифровых индикаторах, большую часть из которых составляют ЖКИ.

Поэтому, тема для разработки была выбранна: “Цифровой измеритель кровяного давления”. Этот прибор является наиболее нужным в каждой семье. Ведь если ты чувствуеш себя не важно, то в любой момент можно померить давление и из полученных результатов сделать вывод, надо бежать в больницу или нет.

1.Техническое задание

Устройство - цифровой измеритель кровяного давления.

Основные технические характеристики прибора:

Общий диапазон измерения:

а. Систолическое/диастолическое давление: от 0 до 250 мм.рт.ст.

б. Пульс: от 0 до 133 уд. в мин.

Минимальный шаг индикации: 1.5 мм.рт.ст.

Точность измерения:

а. Статическое давление: 3 мм.рт.ст.

б. Пульс: 5% показаний.

4. Индикатор: ЖКИ-модуль.

Информация о давлении и пульсе отображается на 16-ти разрядном, 2-х строчном ЖКИ-модуле.

Измерение происходит в полуавтоматическом режиме.

2. Выбор и обоснование элементной базы

В данном устройстве, информация о систолическом, диастолическом давлении и пульсе должна выводиться одновременно. С учётом всего этого, был выбран ЖКИ-модуль DV-16210NRB/R, который имеет две строки, по 16 разрядов в каждой строке.

Датчик давления в рассматриваемом устройстве, должен отвечать следующим требованиям:

1. Датчик должен быть со стандартным выходным сигналом, то есть при минимальном значении давления должен иметь выходной сигнал не более 0,3V, а при максимальном давлении не более 4,8V, это обеспечивает непосредственное соединение датчика с микроконтроллером.

2. Датчик должен измерять относительное давление(относительно атмосферы).

3. Максимальное измеряемое давление должно лежать в пределах от 30 кПа до 50 кПа, так как диапазон измерения систолического/диастолического давления составляет от 0 до 250 мм.рт.ст.

Взяв во внимание все эти 3-и пункта был выбран датчик давления фирмы MOTOROLA MPX5050DP.

2.1 Выбор микроконтроллера

Выбор микроконтроллера осуществляется с учётом следующих параметров:

1. Линий ввода-вывода должно быть не менее 13, т.к. 11 линий необходимо для работы с индикатором, а две линии для работы с сигналами поступающими от датчика давления.

2. Микроконтроллер должен иметь встроенный АЦП, для работы с аналоговыми сигналами поступающими от датчика давления MPX5050DP на входы АЦП микроконтроллера.

Поэтому, принимая во внимание, эти два главных параметра, был выбран маловыводной микроконтроллер фирмы MOTOROLA MC68HC908JL3.

3. Структурная схема устройства

3.1 Состав и назначение отдельных элементов

Структурная схема устройства приведена на рис.3.1.1.

Основой устройства является микроконтроллер. Основная функция микроконтроллера, это прием данных от датчика и активного фильтра(АФ), обработка этих данных, т.е. вычисление систолического, диастолического давления и усреднённой частоты пульса. После того, как все измерения будут произведены, микроконтроллер выводит информацию на индикатор.

Датчик предназначен для перевода давления в манжете, в электрический сигнал, т.е. напряжение.

АФ высокой частоты предназначен для выделения и усиления сигнала, пульсирующего с частотой 1Гц, наложенного на медленно изменяющийся сигнал 0.04Гц. Выделение сигнала необходимо, потому что давление распознаётся по производной сигнала, пульсирующего с частотой 1Гц, а значение давления смотрится по медленно изменяющемуся сигналу (0,04Гц). Поэтому у микроконтроллера задействованы 2-а входа АЦП.

При разработке данного устройства существовала сложность в том, что датчик при неинвазивных применениях(без проникновения во внутренние полости организма) не может быть расположен непосредственно внутри системы, в которой измеряется давление. Поэтому пришлось разработать нестандартную систему измерений, в которой датчик помещается внутри манжеты, на которое наложены небольшие по амплитуде и более быстрые пульсации, соответствующее изменению давления в кровеносной системе.

С внешней стороной этого метода измерения давления крови, называемого осциллометрическим, знакомы практически все. При этом рука сжимается кольцевой надувной манжетой, накачиваемой вручную. Затем вентиль манжеты слегка приоткрывается, и давление в манжете постепенно падает, и, когда оно становится близким к артериальному давлению, амплитуда пульсации давления возрастает. Пульсации давления определяются работой сердца.

Когда давление в манжете изменяется от систолического до диастолического, пульсации давления достаточно велики, за границей этого диапазона они резко снижаются. Определить этот диапазон можно, прослушивая манжету с помощью стетоскопа, но, имея датчик давления, лучше превратить пульсации давления в электрический сигнал и далее анализировать его с помощью микропроцессорного устройства.

Такой электрический сигнал на протяжении всего времени измерения представлен на рис.3.1.2.а. Сначала идёт этап ручной подкачки манжеты(на рис.3.1.2.а. видны повышения давления при каждом нажатии груши), затем в момент t1 прекращается подкачка и открывается вентиль. Давление, которое в момент t1 превышает систолическое, постепенно понижается.

В то же время, как это видно из рис.3.1.2.а. на определённом участке пульсации давления растут, но относительная величина этих пульсаций очень невелика по сравнению с усреднённой величиной давления. Чтобы было удобно работать с сигналом пульсаций, необходимо отфильтровать низкочастотную усреднённую составляющую и усилить сигнал пульсаций. Это можно сделать с помощью активного фильтра на базе операционного усилителя (на структурной схеме АФ). Такой отфильтрованный и усиленный сигнал представлен на рис.3.1.2.б в диапазоне выделенном на рис.3.1.2.а прямоугольником.

Диаграммы рис.3.1.2. хорошо иллюстрируют основную идею измерения давления крови, которая сводится в получении и анализе данных, приходящих с датчика и активного фильтра.

Структурная схема устройства.

11

Рис.3.1.1.

Диаграммы измерения кровяного давления

Рис.3.1.2.

3.2 Анализ ресурсов ввода-вывода

Микроконтроллеры семейства HC08 фирмы MOTOROLA имеют закрытую архитектуру, которая характеризуется отсутствием линий магистралей адреса и данных на выводах корпуса микроконтроллера. Микроконтроллер представляет собой законченную систему обработки данных, наращивание памяти или периферийных устройств с использованием параллельных магистралей адреса и данных не предполагается. Поэтому анализ ресурсов ввода-вывода, должен происходить в самом начале разработки, т.к. в противном случае может возникнуть ситуация нехватки линий ввода-вывода.

На принципиальной схеме изображённой на рис.5.1. можно подсчитать, что у микроконтроллера должно быть не менее 13 линий ввода-вывода(11 линий для работы с ЖКИ-модулем и две линии для работы с датчиком давления).

В данном случае был выбран микроконтроллер MC68HC908JL3, который имеет 22 линии ввода-вывода. То есть, по сути дела у нас остаётся свободными, 9-ть линий ввода-вывода, которые можно использовать для различных усовершенствований прибора. Например, можно дополнительно в приборе сделать часы, также можно сделать, чтобы прибор измерял давление в автоматическом режиме, для этого необходим компрессор, который будет нагнетать давление в манжету. Все эти доработки непосредственно повлекут за собой, задействование дополнительных линий ввода-вывода.

4. Структура алгоритма программы

4.1 Обобщённая БСА

Обобщённая БСА программы, управляющей системой, приведена на рис.4.1.2. После включения питания происходит инициализация всей системы. После этого микроконтроллер ждёт накачки манжеты, осуществляя циклическую проверку окончания накачки. Когда сигнал датчика уменьшается в течении более чем 0,75 секунд, это свидетельствует, что пользователь больше не накачивает манжету, и микроконтроллер начинает анализировать сигнал колебания. Анализ сигнала колебания сводится к идентификации амплитуды пульса и осуществляется в блоках 3 и 4.

Пороговый уровень для измерения частоты импульсов установлен равным 1,75V, чтобы устранить шумы или всплески. Как только амплитуда пульса идентифицирована, микроконтроллер игнорирует сигнал в течении 450 мS, чтобы предотвратить ложную идентификацию из-за наличия промежуточного максимума колебания. После чего в блоке 5 происходит вычисление производной амплитуды пульса. Именно по производной амплитуды пульса определяется давление крови, блок 6.

Из графика показанного на рис.4.1.1., можно увидеть, что основной принцип измерения основан на сравнении производной с 2-мя порогами, Порог1 и Порог2. Более подробно, это будет рассмотрено в пункте 4.2.

График производной амплитуды пульса.

Порог2

Порог1

Рис.4.1.1.

После того как устройство определит давление и пульс, оно проверяет, есть ошибки в измерении или нет. Если ошибки есть, то микроконтроллер выводит сообщение об ошибки, после чего, если манжета спущена, т.е. давление внутри манжеты равно атмосферному давлению, то устройство начинает измерение по новому. Если ошибок нет, то информация о давлении и пульсе выводится на индикатор, после чего система опять смотрит, если манжета спущена, то измерение давления происходит по новому, если манжета не спущена, то программа зациклевается и ждёт спуска манжеты.

Y N

Y N

Y N

N Y

Y

Рис.4.1.2. Обобщённая БСА.

4.2 Рабочая БСА

4.2.1 БСА основной программы

Рабочая БСА придставленна на рис.4.2.1.2..В начале программы происходит инициализация, блок 1, в котором происходит инициализация портов ввода-вывода, АЦП и таймера. После чего в блоке 2 обнуляются все переменные, задействованные в данной программе. Как только, это всё выполнится, происходит запуск АЦП(блок 4), у которого аналоговым входом является линия РТВ0.

Первый результат преобразования аналогового сигнала, заносится в ячейку памяти CONST, и означает значение кода при нулевом давлении. После этого на индикатор выводятся символы как показано на рис.4.2.1.1., и в младшем разряде “сис:” зажигается 0. После чего, идёт процедура ожидания окончания накачки манжеты.

сис х х 0

диа х х х пул х х х

рис.4.2.1.1. Расположение символов на индикаторе.

Она заключается в следующем. В ячейку памяти del заносится число соответствующее задержке 0,75 секунды( бл.12). В блоках 16 и 15 организован цикл, после выполнения которого, происходит индикация текущего давления (бл. 17 - 21). После чего делается декремент ячейки памяти del. Если del0 то, программа переходит к выполнению бл.13. и все происходит заново. Если del=0, то в бл.25. происходит сравнение давления до задержки и после задержки. Если давление после задержки больше давления до задержки, то программа переходит к выполнению бл.12. и данная процедура повторяется. Если же давление после задержки меньше давления до задержки, то это означает, что пользователь прекратил накачку манжеты, и программа переходит на процедуру определения амплитуды.

В начале процедуры, в блоке 30 происходит сравнение напряжения снимаемого с активного фильтра (вход РТВ1) с заданным порогом напряжения (1,75V). Если пороговое напряжение больше напряжения снимаемого с АФ, то программа зациклевается и ожидает когда напряжение с АФ будет больше порогового. Причём, если в течении 5 секунд программа находится в цикле, то измерение прекращается и выводится сообщение об ошибки. Если Upress1>Пор, то происходит сброс ячейки памяти OVSEC, и далее происходит определение значения амплитуды (бл. 33 - 37).

Как только, амплитуда будет определенна, происходит сброс и перезапуск таймера, а также обнуление SEC10 и SEC (бл. 38). После чего значение амплитуды заносится в ячейку памяти АМР2 (бл. 39). Далее АЦП переключается на вход РТВ0 (бл. 40), и результат второго преобразования заносится в UDAV (этот результат показывает давление в манжете), после чего АЦП обратно переключается на вход РТВ1. Как только АЦП переключится на вход РТВ1, ячейка памяти PULSE, в которой находится кол-во пульсаций, инкрементируется. А далее идет процедура вычисления производной амплитуды.

Производная вычисляется по формуле:

,

где, AMP1 и AMP2 - амплитуды;

time - время между амплитудами.

При первом входе в процедуру SB=0 (бл.50), вычисляется время импульса и заносится в ячейку памяти time1 (бл.52 - 55). После чего проверяется (бл.56), если первая амплитуда находится в АМР2, а вторая в АМР1, то они меняются местами (бл.57 - 59) и программа переходит на выполнение бл.29, т.е. определение амплитуды начинается сначала. Если первая амплитуда находится в АМР1, а вторая в АМР2, то ничего не происходит, и определение амплитуды начинается заново.

При последующем входе SB=1, в начале также определяется время импульса, но далее смотрится:

Если РВ=0, то значение времени заносится в time2, после чего из time2 вычитается time1, и РВ устанавливается в “1” (бл.64 - 66).

Если РВ=1, то значение времени заносится в time1, после чего из time1 вычитается time2, и РВ устанавливается в “0” (бл.61 - 63).

И в первом, и во втором случае, результат преобразования заносится в time3 (бл.67).

В блоке 68 происходит определение разности между АМР2 и АМР1. Далее в блоках 69 - 73 вычисляется производная. После чего программа переходит к процедуре определения давления.

Из графика показанного на рис.4.2.1.1. видно, что первая производная, которая больше порога ПОРОГ1 является определяющей для систолического давления, т.е. по ней определяют систолическое давление. Последующее производные, которые больше порога ПОРОГ1, но меньше порога ПОРОГ2 не являются определяющими и игнорируются. Когда производная будет больше порога ПОРОГ2, то она станет определяющей для диастолического давления. Поэтому в процедуре определения давления, сначала определяется систолическое давление (бл.75). Если давление определилось, то значение давления заносится в SIS, после чего бит QB устанавливается в “1” (бл.77,78), и идёт определение диастолического давления. Если давление не определилось, то бит QB не устанавливается, и далее происходит определение диастолического давления.

Как только диастолическое давление будет определенно (бл.76), его значение переносится в DIA (бл.79). После чего осуществляется проверка (бл.80), если SIS=0, то выводится сообщение об ошибки, после чего устройство ожидает спуска манжеты (бл.81), перед повторным измерением. Если SIS0, то идёт вычисление частоты пульса (бл.82 - 84) и далее происходит индикация давления и пульса (бл.85), после чего устройство опять ожидает спуск манжеты перед повторной накачкой.

Страницы: 1, 2, 3, 4