скачать рефераты

скачать рефераты

 
 
скачать рефераты скачать рефераты

Меню

Расчет выпрямителя, расчет транзисторного усилительного каскада, синтез логических схем скачать рефераты

p align="left">Рисунок 1.1 - Структурная схема выпрямителя

Выпрямитель содержит трансформатор Т, необходимый для преобразования напряжения сети Uc до величины U2, определяемой требованиями нагрузки; вентильную группу В, которая обеспечивает одностороннее протекание тока в цепи нагрузки, в результате чего переменное напряжение U2 преобразуется в пульсирующее; фильтр Ф, передающий на выход схемы постоянную составляющую напряжения и сглаживающий пульсации напряжения.

Выпрямитель может быть дополнен схемой стабилизации, подключаемой к выходу фильтра и предназначенной для поддержания напряжения на нагрузке неизменным при изменении напряжения U2 на трансформаторе.

Основными показателями работы выпрямителя являются средние значения выпрямленного тока Id и напряжения Ud:

, (1.1)

, (1.2)

где T - период изменения выходного тока (напряжения);

мощность нагрузочного устройства

; (1.3)

коэффициент пульсаций

, (1.4)

где Uосн m - амплитуда основной (первой) гармоники выпрямленного напряжения;

коэффициент использования вентилей по напряжению

, (1.5)

где Uобр т - максимальное обратное напряжение на вентиле; Uобр доп - допустимое обратное напряжение вентиля;

коэффициент использования вентиля по току

, (1.6)

где Iа - среднее значение тока, протекающего через диод, Iан - номинальное значение тока вентиля;

типовая мощность трансформатора

, (1.7)

где , ;

коэффициент полезного действия

, (1.8)

где Pтр и Pд - потери в трансформаторе и диодах.

Основной характеристикой выпрямителя, как и любого источника питания, является внешняя (нагрузочная) характеристика Ud = f(Id). Она позволяет определить номинальное значение выпрямленного напряжения и выходное сопротивление выпрямителя

. (1.9)

Свойства выпрямителя в значительной степени зависят от характера нагрузки на его выходных зажимах, которая может быть активной (омической), начинающейся с индуктивности и начинающейся с емкости.

Однофазная мостовая схема (рис. 1.2) строится на однофазном трансформаторе Т. Диодная группа образует мост, к одной диагонали которого подводится переменное напряжение, а в другую диагональ включается нагрузка. Диоды работают парами поочередно (рис. 1.3): в положительные полупериоды напряжения U2 ток проводят диоды VD2 и VD3, иначе - диоды VD1 и VD4.

Рисунок 1.2 - Двухполупериодная мостовая схема выпрямителя

Рисунок 1.3 - Диаграммы токов и напряжений

Через нагрузку протекает пульсирующий ток в оба полупериода напряжения u2. Преимуществами данной схемы выпрямления (по сравнению с однополупериодной схемой выпрямления) являются увеличение среднего значения выпрямленного тока и напряжения в два раза и значительное уменьшение пульсаций выпрямленного напряжения, при этом значение обратного напряжения на закрытых диодах такое же, как и в однополупериодной схеме выпрямления.

Схемы выпрямления трехфазного тока применяются в основном для питания потребителей большой и средней мощности. Они равномерно нагружают сеть трехфазного тока и отличаются высоким коэффициентом использования трансформатора, низким уровнем пульсаций. Ниже рассматриваются две часто применяемые схемы.

Трехфазные выпрямители с нейтральным выводом строятся на трехфазном трансформаторе (рис. 1.4), вторичные обмотки которого соединяются «звездой». Нагрузка включается между объединенными катодами диодов и нулевой точкой трансформатора. Из временных диаграмм (рис. 1.5) видно, что диоды проводят ток поочередно, каждый - в течение одной трети периода, когда потенциал начала одной фазы более положителен, чем двух других. Два других диода в этот период закрыты.

Рисунок 1.4 - Трехфазный выпрямитель с нейтральным выводом

Рисунок 1.5 - Диаграммы токов и напряжений

Такая схема нашла применение на средних мощностях (Pd > 1 кВт) при невысоких требованиях к пульсациям выпрямленного напряжения. Достоинство такого выпрямителя - высокая надежность (минимальное число диодов) и низкое значение kп (по сравнению с однофазной схемой выпрямления). Недостаток схемы - подмагничивание сердечника трансформатора постоянным током, что приводит к снижению его КПД.

Трехфазный мостовой выпрямитель (рис. 1.6) можно рассматривать как два трехфазных выпрямителя, соединенных последовательно. Первый содержит диоды VD1, VD3, VD5, второй - диоды VD2, VD4, VD6. В результате среднее значение выпрямленного напряжения в два раза превышает напряжение в трехфазной схеме с нулевым выводом. Ток в нагрузке и двух диодах появляется тогда, когда к этим диодам приложено наибольшее напряжение. Из временных диаграмм (рис. 1.7) видно, что в интервале времени t1 - t2 открыты диоды VD1, VD4, t2 - t3 - VD1, VD6, t3 - t4 - VD3, VD6 и т. д. Продолжительность работы каждого из диодов составляет 1/3 периода. Схема Ларионова обеспечивает наилучшие показатели использования трансформатора и диодов, дает минимальное значение коэффициента пульсаций и получила высокое распространение. Основные параметры рассмотренных схем выпрямления приведены в табл. 1.

Рисунок 1.6 - Трехфазный мостовой выпрямитель

Рисунок 1.7 - Диаграммы токов и напряжений

Обязательной принадлежностью выпрямителя является сглаживающий фильтр, передающий на выход схемы постоянную составляющую выпрямленного напряжения и снижающий его пульсации. Основным параметром, характеризующим работу сглаживающего фильтра, является коэффициент сглаживания S. Он равен отношению коэффициентов пульсаций на входе и выходе фильтра

. (1.10)

Простейшими фильтрами являются конденсатор, включенный параллельно нагрузке (емкостный фильтр, рис. 1.8, а), и дроссель, включенный последовательно с нагрузкой (индуктивный фильтр, рис. 1.8, б).

Пульсации на выходе емкостного фильтра определяются постоянной разряда конденсатора , поэтому такие фильтры целесообразно применять с высокоомным нагрузочным резистором при небольшой мощности выпрямителя.

а

б

Рисунок 1.8 - Однополупериодный выпрямитель с различными фильтрами

Эффективность индуктивного фильтра зависит от его постоянной времени . Длительность импульса тока увеличивается с ростом . Коэффициент сглаживания индуктивного фильтра

. (1.11)

Чем больше значение Lф или меньше Rн, тем эффективнее фильтр. Индуктивные фильтры обычно применяют в трехфазных выпрямителях средней и большой мощности с малым значением сопротивления нагрузки.

Если необходимо обеспечить коэффициент сглаживания 20 < S < 40, применяют Г-образные (LC-, RC-типа) (рис. 9) и многозвенные П-образные фильтры.

а

б

Рисунок 1.9 - Г-образные фильтры: а - LC-фильтр; б - RC-фильтр

В Г-образном LC-фильтре переменная составляющая выпрямленного напряжения снижается из-за сглаживающего действия Cф и падения ее на Lф. Постоянная составляющая на нагрузке Rн практически не уменьшается, так как активное сопротивление дросселя мало. Сопротивление конденсатора должно быть значительно меньше Rн, а сопротивление дросселя . Коэффициент сглаживания определяется по формуле:

. (1.12)

В маломощных выпрямителях, у которых сопротивление нагрузки Rн составляет несколько килоом, вместо Lф целесообразно включать Rф, что позволяет уменьшить массу, габариты и стоимость фильтра. Поскольку при этом несколько снижается напряжение на нагрузке, значение сопротивления Rф выбирают из соотношения:

; (1.13)

.

Для RC-фильтра коэффициент сглаживания меньше, чем для LC-фильтра, и определяется он по формуле:

. (1.14)

П-образный фильтр (рис. 10) представляет собой каскадное соединение емкостного и Г-образного фильтров. Следовательно, коэффициент сглаживания таких фильтров определяется как произведение коэффициентов сглаживания соответствующих фильтров:

, (1.15)

где Sc и Sг - коэффициенты сглаживания емкостного и Г-образного фильтров.

а

б

Рисунок 1.10 - Многозвенные П-образные фильтры

При сопротивлении нагрузки в несколько килоом используется CRC-фильтр (рис. 10, а), при малом Rн - CLC-фильтр (рис. 10, б).

В результате для выпрямителей без фильтра зависимость Ud = f(Id) описывается следующим уравнением:

, (1.16)

где Ud х.х - напряжение холостого хода выпрямителя; Rпр - сопротивление открытых вентилей выпрямителя, включенных последовательно с нагрузкой; Rт - активное сопротивление обмотки трансформатора.

В выпрямителях с емкостным фильтром внешняя характеристика берет начало из точки , так как при Id = 0 конденсатор заряжается до амплитудного значения напряжения вторичной обмотки трансформатора. С ростом тока Id кривая 2 спадает быстрее из-за уменьшения постоянной времени .

В случае использования индуктивного сглаживающего фильтра добавляется падение напряжения на внутреннем сопротивлении дросселя rдр и учитывается падение напряжения на индуктивном сопротивлении обмотки рассеяния xs:

, (1.17)

где , а параметры а и b приведены в табл. 2.

1.3. Расчет

1.3.1 Выбор схемы выпрямителя

Определим сопротивление нагрузки:

Rн = Ud н / Id н;

Rн = = 10 Ом.

Выпрямленная мощность

Pd = Ud н ·Id н;

Pd =160 · 16 = 2 560 Вт.

При мощностях, превышающих 1 кВт, рекомендуется применять выпрямители трехфазного тока. Для уменьшения размеров трансформатора и фильтра выбираем схему Ларионова, имеющую высокие технико-экономические показатели.

1.3.2 Выбор вентилей

Для выбранной схемы определим средний ток через диод:

;

А

Ориентировочное значение обратного напряжения на вентиле

Uобр m > 1,045 Ud н.

Принимаем Uобр m = 1,1·1,045Ud н;

Uобр m = 1,1·1,045·160 = 183,92 В.

По справочным данным выбираем тип вентиля. В данном случае подходит диод типа Д215А (6 вентилей, по одному вентилю в каждом плече моста), который имеет следующие параметры: номинальный прямой ток Iа н = 10 А; прямое падение напряжения Uа = 1 В; допустимое обратное напряжение Uобр доп =200 В; среднее значение обратного тока Iобр = 3 мА.

1.3.3 Выбор и расчет схемы фильтра

В трехфазных схемах выпрямления средней и большой мощности наиболее целесообразно использовать сглаживающий фильтр с индуктивной реакцией, т. е. начинающийся с дросселя. Необходимый коэффициент сглаживания фильтра с учетом явления коммутации

где k п вх - коэффициент пульсаций на выходе вентильной группы.

Для трехфазной мостовой схемы выпрямления Ларионова kп = 0,057. Тогда коэффициент сглаживания

S = (1,5,...,2,0) = 20,5.

Так как S>20 выбираем Г-образный LС-фильтр.

Для схемы Ларионова fо.г = 300 Гц. Рассчитываем минимальное значение индуктивности дросселя, Гн

Гн.

Определяем значение емкости конденсатора, мкФ

.

Ф.

1.3.4 Расчет выпрямителя

Прямое сопротивление вентиля, Ом

Ом.

Коэффициенты для значений сопротивлений дросселя и трансформатора определяются в зависимости от мощности выпрямителя:

Rт = 0,043Rн,

Rт = 0,043·10 = 0,43 Ом;

rдр = 0,046Rн,

rдр = 0,046·10 = 0,46 Ом.

Индуктивное сопротивление рассеивания обмотки трансформатора

Ом.

Напряжение холостого хода для схемы Ларионова

Ud х.х = 160 + 16(2 0,1 + 0,43 + 0,46 +) = 180,65 В.

Параметры трансформатора (с учетом выбранной схемы Ларионова):

- напряжение на вторичной обмотке

U2 = 0,43Ud х.х;

U2 = 0,43 · 180,65 = 77,68 В;

- коэффициент трансформации

.

- ток вторичной обмотки

I2 = 0,82 Idн;

I2 = 0,82·16 = 13,12 А;

- ток первичной обмотки, A

.

- типовая (габаритная) мощность трансформатора

Sтр = 1,045 Ud н? Id н;

Sтр = 1,045·160 ·16 = 2 675,2 Вт.

Проверим нагрузочную способность выбранных вентилей, определив максимальное значение обратного напряжения:

Uобр m= 1,045 Ud х.х ;

Uобр m= 1,045·180,65 = 188,78 В.

Uобр m < Uобр доп ;

Uобр доп = 200 В.

Следовательно, тип вентилей и схема их включения выбраны правильно.

Внешнюю характеристику выпрямителя (рис. 1.11) Ud = f (Id), которая представляет собой прямую линию, строим по двум точкам: точке холостого хода (Ud = Ud х.х , Id = 0) и точке номинальной нагрузки (Ud = Ud н, Id = Id н).

Рисунок 1.11 - Внешняя характеристика выпрямителя

2. Расчет транзисторного усилительного каскада

В процессе выполнения задания необходимо определить:

- положение рабочей точки покоя и соответствующие ей значения токов Iб0, Iк0, Iэ0 и напряжений Uбэ0, Uкэ0;

- диапазон изменения входного ±Um вх и выходного ± Um вых напряжения;

- значения сопротивлений резисторов R1, R2, Rэ, Rк и емкости конденсаторов Cэ, Cр1 и Cр2;

- параметры усилительного транзисторного каскада: входное Rкаск вх и выходное Rкаск вых сопротивления, коэффициенты усиления по току KI, напряжению KU и мощности KP.

Тип биполярного транзистора для усилительного каскада МП41А. Предельно допустимые и hб-параметры транзисторов приведены в таблице 2.1. Напряжение источника питания Eк =13,5 В.

Таблица 2.1 - Выбор типа биполярного транзистора

Номер варианта

Тип транзистора

h-параметры

Предельные значения

h11б,

Ом

h12б

h21б

h22б,

См

Uкэ, В

Iк, мА

Pдоп, мВт

23

МП41А

25

210-3

-0,98

110-6

15

40

150

Усилитель - это электронное устройство, управляющее потоком энергии, идущей от источника питания к нагрузке. Причем мощность, требующаяся для управления, как правило, намного меньше мощности, отдаваемой в нагрузку, а формы входного и выходного сигналов совпадают.

В усилительном каскаде на биполярном транзисторе, включенном по схеме с общим эмиттером , в коллекторную цепь транзистора включен резистор Rк, с помощью которого формируется выходное напряжение.

Рисунок 2.1 - Схема транзисторного усилительного каскада с эмиттерной стабилизацией рабочего режима

Делитель напряжения на резисторах R1 и R2 определяет значение тока базы Iб0, обеспечивающего положение рабочей точки покоя Рт в режиме класса А. Для уменьшения влияния температуры на режим работы транзистора в цепь эмиттера включен резистор Rэ, который осуществляет последовательную отрицательную обратную связь по постоянной составляющей. Конденсатор Cэ исключает влияние отрицательной обратной связи по переменной составляющей .Разделительный конденсатор C1 устраняет влияние внутреннего сопротивления источника входного сигнала Uвх на режим работы транзистора по постоянному току. Конденсатор C2 обеспечивает выделение из коллекторного напряжения переменной составляющей Uвых, которая может подаваться на нагрузочный резистор Rн. Rк позволяет регулировать разность потенциалов Uкэ.

Начертим входную характеристику Iб = f (Uбэ) при Uкэ = - 5 В и семейство выходных вольт-амперных характеристик Iк = f (Uкэ) при Iб = const, на которых по нескольким точкам построим кривую допустимой мощности Pк , рассеиваемой транзистором (рис. П2.1). Ниже этой кривой из точки Uкэ = 14, выбрав наиболее подходящий угол наклона, проведем нагрузочную линию Uкэ = Eк - Iк(Rк+Rэ), на которой выберем и отметим положение рабочей точки покоя Рт в режиме класса А и допустимые при этом пределы изменения амплитуды базового тока ±Imб, соответствующие максимальному значению входного сигнала. Положение рабочей точки на входной характеристике должно соответствовать значению тока Iб0, при котором выбрана рабочая точка на пересечении линии нагрузки и выходной характеристики.

На графиках выходных и входной характеристик изобразим (подобно рис. П.2) кривые iк = Iк0 + Im к sin(t), uкэ =Uкэ0 + Um кэsin(t), iб = Iб0 + Im бsin(t).

По графикам определим и значения:

Iб0=0,3 мА;

±Im б = ±0,5 (Iб max - Iб min); (2.1)

Im б = 0,5 (0,5- 0,1) = 0,2 мА;

Iк0=22 мА;

±Im к = ±0,5 (Iк max - Iк min); (2.2)

Im к = 0,5 (34-8) =13 мА;

Iэ0 = Iб0+Iк0; (2.3)

Iэ0=0,0003+0,022 = 0,0223 А;

Uбэ0=0,24 В;

±Um бэ = ±0,5 (Uб max - Uб min); (2.4)

Um бэ = 0,5 (0,275 - 0,18) = 0,095 В.

Uкэ0 = 6,2 B

±Um кэ = ±Um вых = ±0,5(Uкэ max - Uкэ min). (2.5)

Um кэ = 0,5(10,4 - 2,0) = 4,2 B.

Рассчитаем значения hэ-параметров для схемы с общим эмиттером:

h11э = h11б / (1+h21б);

h11э = 25 / (1+(-0,98)) = 1250 Ом.

h12э = (h11бh22б - h12бh21б - h12б) / (1+h21б);

h12э = (25 1 10-6 - 2 10-3 (-0,98) - 2 10-3) / (1-0,98)= -0,00075.

h21э = - h21б / (1+h21б);

h21э = - (-0,98) / (1-0,98) = 49.

h22э = h22б / (1+h21б);

h22э = 1 10-6 / (1-0,98)=1 10-5 См

Для схемы включения транзистора с общим эмиттером определим входное сопротивление транзистора:

rвх транз = h11э;

rвх транз =1250 Ом.

Определим коэффициент передачи тока:

= h21э;

= 49.

Рассчитаем значения сопротивлений резисторов и емкостей конденсаторов:

Rэ = (0,2,…,0,3) Eк / Iэ0; (2.10)

При подстановке значений получаем:

Rэ = 0,25 / 0,0223 = 151,35 Ом.

Принимаем Iдел = (2,…,5) Iб0 ; Iдел = 3,50,0003 = 0,00105 А.

Рассчитаем делитель напряжения на резисторах R1 и R2:

R1 = (Iэ0Rэ + Uбэ0) / Iдел; (2.11)

R1 =(0,0223151,35 + 0,24) / 0,00105 = 3442,95 Ом.

R2 = (Eк - IделR1) / (Iдел + Iб0); (2.12)

R2 = (13,5 - 0,001053442,95) / (0,00105 + 0,0003) = 7323,15 Ом

Рассчитаем напряжение, позволяющее регулировать разность потенциалов Uкэ.

Rк = (Eк - Uкэ0 - Iэ0Rэ) / Iк0; (2.13)

Rк = (13,5 - 6,2-0,0223151,35)/0,022 = 178,4 Ом.

Рассчитаем эквивалентное сопротивление базовой цепи для переменной составляющей входного тока:

Rб = R1R2 / (R1+R2); (2.14)

Rб = 3442,957323,15/(3442,95 + 7323,15) = 2341,9 Ом.

Значения емкости конденсаторов при частотной полосе входного сигнала в пределах fн = 100 Гц, fв = 10000 Гц определяются так:

Cэ = 107 / [(1,…,2)2fнRэ]; (2.15)

Cр1 = Cр2 = 107 / [(1,…,2)2fнRкаск вх], (2.16)

где Cэ, Cр1 и Cр2 - в мкФ.

При подстановке значений получаем:

Cэ = 107 / [1,523,14100151,35] = 76,75 мкФ.

Определим параметры усилительного каскада.

Входное и выходное сопротивления каскада определяются следующим образом:

Rкаск вх = Rбrвх транз / (Rб + rвх транз); (2.17)

Rкаск вх = 2341,9 1250/ (2341,9+1250) = 815 Ом.

Rкаск вых = Rк / (1 + h22эRк); (2.18)

Rкаск вых = 178,4 / ( 1+110-5) = 178,08 Ом.

Cр1 = Cр2 = 107 /[1,523,14100815] = 13,03 мкФ .

Коэффициенты усиления каскада без дополнительной внешней нагрузки, а также без учета внутреннего сопротивления источника входного сигнала имеют вид:

KI = Iвых / Iвх ; KI=49. (2.19)

KU = - (Rк) / Rкаск вх; (2.20)

KU = - (49) /815 = -10,73.

KP = KIKU; (2.21)

KP=49 (-10,73) = -525,6.

Полезная выходная мощность каскада

Pвых = 0,5 (Um вых)2 / Rк; (2.22)

Pвых = 0,5 (4,2)2 / 178,4 = 0,0494 Вт.

Полная мощность, расходуемая источником питания,

P0 = Iэ0Eк + I2дел (R1 + R2) + I2б0R2; (2.23)

P0 = 0,0223 +(0,00105)2 (3442,95 + 7323,15) +(0,0003)2= 0,314 Вт.

Вычислим электрический КПД усилительного каскада

э = (Pвых / P0) 100%; (2.24)

э = (0,0494/ 0,314) 100% = 15,7%.

Вычислим коэффициент нестабильности каскада по коллекторному току (желательно, чтобы он был меньше)

S = / (1+); (2.25)

где = Rэ / (Rб + Rэ). (2.26)

= 151,35/ (2341,9 + 151,35) = 0,061;

S =49 / (1+490,061) = 12,33.

S (Rб + Rэ) / [(1+h21б) Rб + Rэ], (2.27)

S ( 2341,9 + 151,35) / ((1-0,98)2341,9 + 151,35) = 12,58.

3. Синтез логических схем

3.1. Краткие теоретические сведения

Логические (цифровые) схемы составляют основу устройств цифровой (дискретной) обработки информации - вычислительных машин, цифровых из-мерительных приборов и устройств автоматики. Связи между этими схемами строятся на основе исключительно формальных законов. Инструментом такого построения и анализа служит булева алгебра, которая применительно к цифровой технике называется алгеброй логики.

Логическая функция - логическая (зависимая) переменная, значение ко-торой является функцией одной или нескольких логических (независимых) пе-ременных.

Таблица истинности - таблица, в которой заданы значения логической функции для всех возможных значений независимых переменных.

Рассмотрим функцию, заданную в виде f = {4, 6, 7} а, b, с.

1) Составляем таблицу истинности для данной функции. Заполняем столбцы аргументов а, b, с числовыми значениями в порядке возрастания номеров наборов в двоичном коде. Поскольку в числовом выражении функции присутствуют только номера сочетаний, соответствующие единичным значениям функции, то это позволяет проставить логические единицы для наборов 4, 6 и 7, а логические нули - для сочетаний 0, 1, 2, 3 и 5 (табл. 3.1).

Таблица 3.1 - Таблица истинности

a

b

c

f

0

0

0

0

0

1

0

0

1

0

2

0

1

0

0

3

0

1

1

0

4

1

0

0

1

5

1

0

1

0

6

1

1

0

1

7

1

1

1

1

Для записи СДНФ из таблицы истинности выбираем те строки, в которых значение функции равно единице. Для каждой такой строки составляем конъюнкцию всех входных переменных, записывая сомножитель, если эта переменная принимает значение единицы. Записываем логическую сумму всех найденных произведений и приходим к выражению вида:

Для записи СКНФ из таблицы истинности выбираем строки, в которых значение функции равно нулю, инвертируем аргументы и получаем:

3) Учитывая законы алгебры логики, упрощаем выражение СДНФ функции. Используем распределительный закон для суммы произведений, выносим за скобки общие множители:

Применяя правило отрицания, согласно которому сумма прямого и инверсного значения переменной а в скобках равна единице, запишем функцию в виде:

Для дальнейших преобразований используем распределительный закон для произведения сумм логических переменных:

И окончательно, применяя правило отрицания для суммы прямого и ин-версного значений переменной Ь, записываем выражение:

Составляем карту Карно для функции/ Поскольку имеется три аргумента (а, b, с), то карта содержит 23 = 8 клеток. Обозначаем координаты а, b, с карты, проставляем единицы в клетки, соответствующие 4, 6 и 7 наборам (используем выражение СДНФ, полученное ранее), во все остальные клетки записываем нули (рис.3.2, а).

Минимизация функции, заданной в виде координатной карты, предполагает склеивание четного количества (2, 4 и 8) находящихся рядом единиц для получения МДНФ, причем чем больше единиц будет объединено, тем более компактную алгебраическую запись будет иметь функция.

Объединяемые единицы выделяем графически на карте, как показано на рис. 2, б. Полученные произведения аргументов записываем в виде слагаемых МДНФ с последующим вынесением за скобки общего множителя:

1

1

0

1

0

0

0

0

1

1

0

1

0

0

0

а б

Рисунок 3.2 - Карта Карно: а - заполнение исходной карты; б - минимизация карты

6) Реализуем полученную функцию на логических элементах базисов И-ИЛИ-НЕ (П.3, а), ИЛИ-НЕ (П.3, б) и И-НЕ (П.3, в), используя из-вестные способы реализации основных логических функций.

Заключение

В первой задаче был рассчитан выпрямитель для промышленной установки. В процессе выполнения задания была выбрана схема выпрямителя и фильтра; рассчитаны режимы работы элементов; определены тип вентиля, параметры трансформатора; рассчитаны значения элементов сглаживающего фильтра; построена внешняя характеристика выпрямителя.

Во второй задаче проведено графоаналитическое исследование режима работы транзистора в классе А и определены основные параметры транзисторного усилительного каскада в схеме с общим эмиттером при одном источнике питания Eк с автоматическим смещением и эмиттерной стабилизацией рабочего режима, с последовательной отрицательной обратной связью по постоянной составляющей тока.

В последней задаче изучены принципы функционирования логических элементов, минимизированы логические функции алгебраическим методом и с помощью карт Карно, а также реализованы цифровые комбинационные схемы в различных базисах.

Полученные результаты могут быть использованы при расчётах реальных приборов.

Библиографический список

1. Методические указания к самостоятельным занятиям по курсу электроники / В.В. Харламов, Р.В. Сергеев, П.К. Шкодун; Омский гос. ун-т путей сообщения. Омск, 2007. 44с.

2. Общая электротехника / Под ред. А.Т. Блажкина. Л.: Энергоатомиздат, 1986. 592 с.

3. Электротехника / Под ред. В.Г. Герасимова. М.: Высшая школа, 1985. 480с.

4. Основы промышленной электроники / Под ред. В.Г. Герасимова. М.: Высшая школа, 1986. 336 с.

Страницы: 1, 2