скачать рефераты

скачать рефераты

 
 
скачать рефераты скачать рефераты

Меню

Проект комплектного тиристорного электропривода постоянного тока скачать рефераты

p align="left">

Переход к относительным единицам.

Для выполнения расчётов, связанных с выбором типа и параметров регуляторов, оценкой

статических и динамических показателей процессов в электроприводе, полезно составить для

выбранного варианта комплектного электропривода упрощенную принципиальную

(функциональную) (см.рис.6.2 ) и структурную(см.рис.6.3) схемы.

Структурная схема составлена на основании уравнений звеньев, записанных в относительных

единицах, что позволяет значительно упростить запись самих уравнений и последующие

расчёты. В качестве базовых величин принимаю[1]:

для напряжения и тока якоря - их номинальные значения

для момента на валу и электромагнитного момента двигателя - величину электромагнитного момента при номинальных токе якоря и напряжении на якоре

для скорости вращения двигателя - скорость его идеального холостого хода при номинальных магнитном потоке и напряжении на якоре

для напряжений на входе тиристорного преобразователя - то приращение входного напряжения, которое для преобразователя с линеаризованной статической характеристикой создают изменение выходного напряжения, равное базовому напряжению на нагрузке

для напряжений на входах датчиков обратных связей - показания датчиков при базовом значении измеряемой координаты. При этом величины коэффициентов усиления датчиков обратных связей (в абсолютных единицах) должны быть подобраны так, чтобы во всём возможном диапазоне измеряемой координаты выходное напряжение датчика соответствовало работе его на линейном участке статической характеристики.

для задающих напряжений (как во внешних так и во внутренних контурах регулирования ), сравниваем на входах регуляторов с напряжениями датчиков обратных связей ,- их значения, эквивалентные базовым величинам сигналов обратных связей, т.е. найденные на основании выражения:

Uзб=Uдб*Rвхз/Rвх ос (6.1)

Здесь, Uзб , Uдб -базовые напряжения задания и датчика обратной связи, Rвхз,Rвх ос - сопротивления входных резисторов по каналам задания и обратной связи.

Таблица 6.1

Базовые значения переменных в электроприводе

N№

Наименование переменной

Обозначение

Расчетная формула

Численное значение

Размерность

2

3

4

5

6

1

Напряжение на якоре, ЭДС преобразователя ТП и двигателя

Uя, Еп, Ед

220

В

2

Ток якорной цепи ЯЦ

381

А

3

Момент двигателя

М

Iн*кФн

518.16

Нм

4

Скорость вращения двигателя

N

Uн/кФн

217

Рад/с

5

Коэффициент пропорциональности между ЭДС и скоростью двигателя

кФ

КФн

1.36

В*с/рад

6

Ток возбуждения двигателя

4.94

А

7

Напряжение на обмотке возбуждения, ЭДС тиристорного возбудителя

Uв, Етв

Iвн*Rв

220

В

8

Напряжение на выходе регулятора тока якоря

Uртя

F(Еп)

10

В

Напряжение на выходах датчика тока якоря ДТЯ и регулятора скорости РС

Uдтя, Uрс

Кдтя*Iн

5

В

10

Напряжение на выходах датчика скорости ДС и задатчика интенсивности ЗИ

Uдс, Uзи

Кдс*nб

10

В

7. Определение параметров силового электрооборудования

Tд -механическая постоянная времени звена Д, учитывающего на структурной схеме механическую инерцию вращающихся масс двигателя и механизма

Тд=(Jд+Jм)nб/Mн=1.8*7*217/518.16=3.94 с (7.1)

Здесь Jд ,Jм - моменты инерции двигателя и рабочего механизма.

- Rяц - суммарное сопротивление силовой цепи преобразователь - двигатель.

Rяц= Rя+Rдп+Rко+2Rтр+Rэ=0.04 Ом (7.2)

- Lяц - суммарная индуктивность якорной цепи

(7.3)

Тяц - электромагнитная постоянная времени якорной цепи.

Тяц=Lяц/ Rяц = 0,04 с (7.4)

Кяц - кратность тока короткого замыкания силовой цепи преобразователь - двигатель

Кяц = Uн / Iн*Rяц = 14.4

- постоянная времени чистого запаздывания преобразователя

=Т/m=1/(50*6)= 0.003 с (7.5)

Тп - постоянная времени фильтра преобразователя

Тп = 0,002 с (7.6)

8. Выбор типа регуляторов и расчёт их параметров

Вид передаточной функции и параметры регуляторов буду выбирать таким образом, чтобы выполнить заданные требования к настраиваемому контуру регулирования. Точный расчёт ведется с помощью логарифмических амплитудных частотных характеристик по методике, изложенной в курсе ТАУ.

Предварительный выбор параметров регуляторов (метод технического оптимума).

Настройка контура регулирования тока якоря (КРТЯ)

При настройке КРТЯ нужно стремиться к достижению максимально высокого быстродействия, чтобы не допустить в переходном процессе опасных бросков тока якоря при резком приложении чрезмерной статической нагрузки. Т.е. регулятор тока должен содержать пропорциональный (П) канал. Однако П - регулятор тока, сообщая контуру регулирования высокое быстродействие, оставляет большую статическую погрешность регулирования. Это препятствует максимальному использованию двигателя по току во всём диапазоне скоростей. Поэтому применяют пропорционально - интегральный (ПИ) регулятор тока.

(8.1)

Введём расчётную постоянную времени:

Трт = Т1 / Кяц (8.2)

Т2 = Тi max = Tяц = 0,04 с (8.3)

(8.4)

Т1 = (0.144…0.288) с

Настройка контура регулирования скорости (КРС).

При настройке КРС поддержание заданного значения скорости независимо от приложенных возмущений и достижение требуемых по качеству процессов пуска и торможения электропривода решаются проще и качественнее для быстродействующих КРС. Но предельное быстродействие КРС ограничено условиями его устойчивости и влиянием оборотных пульсаций напряжения тахогенератора. Для стандартных электроприводов принимают с = (15…20) рад/с.

Введём расчётную постоянную времени:

Трс = Тд / Крс (8.5)

Здесь Крс - коэффициент пропорционального регулятора скорости (РС).

Трс = 1/с = (0.066…0,05) с (8.7)

Крс = (59...78.8)

Проверим величину статической ошибки скорости nс в замкнутой системе с П-РС

nсзамкн = Мс/ Крс = (1.3…1.0)% (8.8)

nсзамкн < Дncзад ,

Значит достаточно П - РС.

(8.9)

Уточнение параметров регуляторов

Уточнение проведем с помощью логарифмических амплитудных частотных характеристик (см.рис.8.1 и 8.2).

Т1=0.09 с Т2=0.03 с Крс=40

Расчет значений сопротивлений и емкостей РТ и РС.

Регулятор тока

wкрт = 100 рад/с

Kpт =Т2/Т1= 0.333

T1 = 0.09 c

R4 = R5= 63 кОм

R6 =10 кОм

T2 = R4 * С4

С4 = 0.5 мкФ

Регулятор скорости.

wкрс = 20 рад/с Kpс = 40

R3 = 400 кОм

R1=R2 =5 кОм

9. Построение статических характеристик замкнутой системы электропривода

Строим следующие характеристики электропривода:

-электромеханическую n = f(Iя),

-внешнюю Uя = f(Iя),

-регуляторные Uрт = f(Iя). Uрс = f(Iя),

-механическую n = f(M),

1. Uя = Ед + Iя Rяд (9.1)

Ед = w = 1 - Дw = 1 - Iя / Kpc

Uя = 1 + Iя(1/ Крс + Rяц)

2. Uрс = Кдтя * Iя * R4/R5 (9.2)

3. Uрт = Еп / Кп (9.3)

Кп = Uн / Uун = 220 / 6.25 = 35,2

4. n = f(M) (9.4)

Iя = M

Зависимости представлены на рисунке 9.1.

10. Защиты в электроприводе и расчет их уставок

В релейно-контакторной части комплектного тиристорного электропривода выполнен ряд защит, исключающих аварийные режимы при сборке силовой схемы и обеспечивающих отключение электропривода при возникновении аварийных режимов в процессе работы.

Защита от аварийных режимов при сборке схемы.

Защита выполнена на реле КVI, КV3 и предназначена для запрета сборки схемы (включения линейного контактора), если на преобразователе или двигателе существует напряжение, превышающее порог срабатывания реле.

Настраиваются реле на минимальное напряжение втягивания. Для приводов 220 В - Uвт=0,35*220=80 В.

Нулевая защита.

Защита выполнена на блокировочном контакторе КFV, в цепь катушки которого включены все остальные защиты от аварийных режимов работающего двигателя, а также блок-контакты аппаратов, контролирующих нормальную работу тиристорного преобразователя, возбудителя и системы регулирования.

Контактор KFV обеспечивает контроль наличия оперативного напряжения и исключает самозапуск двигателя после исчезновения оперативного напряжения и его повторной подачи.

Напряжение втягивания контактора KFV обычно принимается равным 145 В при напряжении оперативной сети 220 В.

Защита от перенапряжения.

Реализована на реле KV2 и предназначена для отключения двигателя при подаче на него недопустимо большого напряжения от преобразователя (например, вследствие аварии и полного его открытия).

Установка реле KV2 рассчитывается по формуле:

Uвт=(1,1…1,15) Uнд = (242...330) В

Где Uвт-напряжение втягивания KV2, Uнд -номинальное напряжение двигателя.

Максимально токовая защита.

Реализована на реле FAI. Защита предназначена для отключения двигателя при недопустимой технологической перегрузке.

Уставка реле рассчитывается по формуле:

Iвт = (1,1…1,25) Км*Iн = (1,2…1,25)*2,5*632 = (1896…1975) А

где Iвт - ток втягивания реле FAI,

Км - перегрузочная способность двигателя,

Iн - номинальный ток двигателя.

Максимальная защита цепи возбуждения.

Защита выполнена на реле КА2 и предназначена для отключения двигателя при коротком замыкании в цепи обмотки возбуждения.

Уставка реле рассчитывается по формуле:

Iвт = 1,1 Iвн =5,324 А,

Где Iвт-ток втягивания КА2, Iв.расч - расчетное значение тока возбуждения двигателя, которое принимается при нерегулируемом потоке двигателя равным номинальному току возбуждения, при постоянно ослабленном потоке- току возбуждения при этом потоке, при регулируемом потоке-максимальному току возбуждения.

Защита от обрыва поля.

Защита реализована на реле КА1 и предназначена для отключения двигателя при обрыве в цепи обмотки возбуждения. Расчет уставки втягивания реле КА1 выполняется в зависимости от способа управления потоком возбуждения.

При постоянном потоке возбуждения ток втягивания реле КА1

Iвт = (0,5…0,7) Iвн = 2,42… 3,388А,

Защита от недопустимого увеличения скорости двигателя.

Защита выполняется посредством механического центробежного реле SR.как правило, центробежная защита выполняется на именниковых двигателях мощностью от 100 кВт и выше при условии регулирования потока возбуждения. Уставка центробужного реле обычно задается заводом-изготовителем двигателя и лежит в пределах:

Nвт = (1,1…1,2) nмакс = 1650…1800 об/мин,

Где nвт-скорость срабатывания центробежного реле, nмакс-максимальная рабочая скорость вращения двигателя.

11. Исследование качества процессов в проектируемой системе электропривода

Исследование влияния изменения параметра Т4 на вид переходных процессов представлена на рисунке 11.1 .

1.Крс=40 с

Пере регулирование =0

Время переходного процесса tпп=0,5 с

2. Крс=80 с

Пере регулирование =0

Время переходного процесса tпп=0,2 с

Крс=160 с

Пере регулирование =0

Время переходного процесса tпп=0,1 с

12. Вывод

В данном курсовом проекте был спроектирован комплектный тиристорный электропривод постоянного тока на основании технических требований представленных в таблице №1. Для этого, выбран двигатель П 102, определена структура системы управления, выбран тиристорный преобразователь КТЭУ 800/220-532-1ВМДТ-УХЛ4 и трансформатор ТСЭП - 250/0,7У3 к нему, произведен синтез регуляторов.

Литература

1.Усынин Ю. С. Управление замкнутыми электроприводами: Конспект лекций . Ч.1. -

2. Усынин Ю. С., Осипов О. И., Мацин В. П.. Системы управления электроприводов: Учебное пособие к курсовому проектированию.-

3. Лебедев Е. Д.. Управление вентильными электроприводами постоянного тока. М.: Энергия 1970

4. Справочные данные по электрооборудованию. В 2 - х т. Т. 1. Электрические машины общего применения. - Л.: Энергия, 1964.

Спецификация

Рисунок 8.1 ЛАЧХ для уточнения параметров КРТ

Рисунок 8.2 ЛАЧХ для уточнения параметров КРС.

Рисунок 11.1. Влияние параметра Крс на показатели качества переходных процессов

Страницы: 1, 2