скачать рефераты

скачать рефераты

 
 
скачать рефераты скачать рефераты

Меню

Проектирование установки вакуумного напыления пленок КР1095 ПП1 скачать рефераты

p align="left">Выход SX переходит в состояние логической «1», когда сигнал на входе Х1 превышает сигнал на входе «2». В обратном случае вход SX находится в состоянии логического «0».

На выходе SXY формируется сигнал логической «1», когда мощность положительная и логический «0», когда мощность отрицательная.

Путем подключения внешнего резистора к выходу БИС 1В, при необходимости, можно регулировать ток потребления ПМЧ. При этом если внешний резистор подключается между 1В и 2 Исс, то ток потребления возрастает, а если внешний резистор подключен между 1В и 1 Исс, то ток потребления уменьшается.

Выход БИС ОВ является служебным, либо подключается к 2 Исс, либо остается незадействованным.

По разности количества импульсов, приходящих на выводы F2 и F1 можно определить амплитуду напряжения, поступающую на вход БИС с датчика напряжения.

1.3 Краткое описание технологического процесса изготовления изделия КР1095ПП1

Основным недостатком ИС с алюминиевым затвором является наличие больших межэлектродных емкостей Сзи и Сзс, снижающих общее быстродействие ИС. Эти емкости образуются в результате перекрытия затвором областей истока и стока. При этом указанное перекрытие характеризуется большим разбросом из-за неровности краев металлизации затвора и границ диффузионных слоев истока и стока.

Существенного уменьшения емкости перекрытия Сзи и Сзс можно добиться при использовании технологии с самосовмещенным затвором. Основная идея такой технологии заключается в изменении порядка формирования электродов МДП - транзистора: вначале образуется затвор, после чего формируются области стока и истока. При этом затвор используется в качестве маски, что приводит к совпадению границ диффузионных областей с краями затвора. В результате перекрытие затвора и порождаемые им емкости существенно уменьшаются. Наиболее совершенной технологией с самосовмещенным затвором в настоящее время является технология КМДП ИС с кремниевым затвором.

Технологический процесс изготовления КМДП ИС с кремниевым затвором его и его основные этапы представлены на рис. 3. В этом процессе формирование больших областей («карманов») p_типа такое же, как и в технологическом процессе КМДП ИС с алюминиевым затвором, т.е. для этого в подложку через фоторезистивную маску, создаваемую фотолитографическим способом, внедряется методом ионной имплантации легирующая примесь, в данном случае бор (рис. а). После получения «кармана» p_типа на пластину наносится тонкий слой SiO2, который выполняет роль подзатворного диэлектрика МДП - транзисторов двух типов проводимости (рис. б).

Следующий этап - на слой SiO2 методом химического распыления наносится слой поликристаллического кремния. После этого осуществляется фотолитографическое травление, в процессе которого в местах, где должны формироваться области стоков и истоков, стравливается слой поликристаллического кремния, а также слой, лежащий над ним - SiO2. в результате такого травления получается структура, изображенная на рис. в.

Для уменьшения удельного сопротивления поликремниевых участков затвора осуществляется их легирование примесью бора или фосфора в зависимости от типа проводимости в канале. Такое легирование проводится одновременно с формированием областей стоков и истоков транзисторов. На рис. 3 показано поочередное нанесение слоев SiO2 из кремнийорганических соединений (n- и p - SiO2) с последующим формированием областей стоков и истоков МДП - транзисторов обоих типов проводимости. Как видно из этого рисунка, в процессе формирования этих областей в качестве маски используются участки поликремния, выполняющие роль затворов МДП - транзисторов. В результате обеспечивается самосовмещение границ затвора и областей стока и истока. Отметим, что использование алюминия в качестве затвора и маски для обеспечения самосовмещения оказывается невозможным, т. к. его температура плавления ниже температуры легирования кремния примесями на стадии разгонки.

Кроме уменьшения емкости перекрытия рассмотренная технология обеспечивает еще один положительный эффект. Поскольку здесь затвор и подложка оказываются выполненными из одного материала, контактная разность потенциалов между указанными элементами становится равной нулю, что приводит к уменьшению порогового напряжения до 1..2В вместо обычных 2,5…3В.

На заключительном этапе (аналогично КМДП ИС с алюминиевым затвором) через предварительно протравленные химическим путем (методом фотолитографии) окна, на пластины с помощью напыления наносится слой металлизации, после фотолитографической обработки которого формируются контактные площадки и межсоединения, функционально связывающие КМДП - структуры в ту или иную конкретную ИС. Пластины со сформированными на них таким образом КМДП ИС подвергаются общей защите от внешних загрязнений и механических повреждений пиролитическим окислом. После этой операции для обеспечения доступа к алюминиевым контактным площадкам в соответствующих местах вскрываются окна.

Рис. 3 Схема изготовления КМДП ИС с кремниевым затвором

Структурная схема технологического процесса изготовления ИС КР1095ПП1 показан на рис. 4.

1.4 Литературный обзор

1.4.1 Механизмы отказов металлизации в результате электромиграции

Важную роль в производстве интегральных схем играет соединительная металлизация. Занимаемая ею площадь сравнима, а иногда превышает площадь активных и пассивных элементов. Требования к способу металлизации можно определить с точки зрения исходных параметров, процента выхода годных, надежности, простоты изготовления и стоимости.

В процессе эксплуатации ППП и интегральных микросхем металлизация подвергается токовым и тепловым нагрузкам. Все это создает благоприятные условия для протекания различных процессов деградации металлической разводки, приводящих к изменению ее первоначальных свойств, и в ряде случаев к внезапным отказам.

Явление электродиффузии и электромиграции заключается в том, что в металлических проводниках в определенных условиях при прохождении постоянного тока большой плотности (около 106 АЧсм2) наблюдается перенос материала проводника из района отрицательного контакта к положительному.

При приложении электрического поля Е к проводнику, в нем возникает поток электронов Iе, направленный навстречу электрическому полю. Положительно заряженные ионы металла в этих условиях испытывают воздействие двух сил: Fz - возникающая под действием электрического поля, стремясь переместить ионы по направлению поля. Происхождение второй силы Fе связано с взаимодействием потока электронов с ионами металла, она направлена навстречу электрическому полю. При достаточно большой плотности тока возникают условия, когда Fz > Fе и ионы металла начинают перемещаться из области контакта, находящегося под (-) потенциалом в область положительного контакта.

В результате этого в области (-) контакта создаются обедненные участки и пустоты, а в районе положительного контакта происходит накопление металла, а в отдельных местах образуются бугорки, вырастают металлические «усы» и «метелки». Неоднородный нагрев проводника ускоряет процесс переноса.

Конечным результатом процесса может быть значительное уменьшение сечения проводника в области отрицательного контакта вплоть до наступления разрыва пленки.

Исследование температурной зависимости электродиффузии в металлических тонких пленках показало наличие двух механизмов переноса вещества в пленочных проводниках. Тонкие проводящие пленки, в том числе алюминиевые, представляют собой поликристаллическую структуру. При относительно низких температурах (до +200 0С) в пленках перенос вещества происходит вдоль границ зерен.

Объемная диффузия при низких температурах значительно меньше, т. к. протяженность границ зерен существенно больше размеров самих кристаллов.

При этом энергия активации диффузии вдоль границ зерен существенно ниже (0,5…. 0,7 эВ) по сравнению с энергией активации процесса объемной диффузии (около 1,4 эВ). Интенсивность диффузии в мелкокристаллических структурах существенно выше, чем в крупнокристаллических. С ростом температуры увеличивается коэффициент объемной диффузии, и перенос вещества происходит преимущественно по объему поликристалла. [7]

Изучение процесса формирования пустот вследствие электродиффузии в тонкопленочных алюминиевых проводниках показывает большую неоднородность границ зерен. Наиболее вероятно пустоты образуются вблизи точек соприкосновения трех зерен, т. к. при направлении потоков электронов слева направо движение ионов металла более вероятно вдоль двух границ зерен направо, чем вдоль одной границы налево.

Для проводящих дорожек равного поперечного сечения, перенос вещества происходит интенсивнее в тех местах, где более густая сеть границ зерен, т.е. в местах с более мелкой структурой. Поэтому в этих местах имеется повышенная вероятность возникновения пустот, объединение их с образованием сквозных трещин.

Изменение ориентации зерен также способствует изменению скорости переноса вещества и образованию пустот и трещин. Это может иметь место при изменении структуры или состава подложки, на которую нанесена металлическая пленка.

В алюминиевых пленках на монокристаллическом кремнии обнаруживается тенденция к образованию структуры, близкой к монокристаллической, в то время как на двуокиси кремния образуется более разупорядочная пленка, близкая к аморфной. На границах таких областей с большей вероятностью образуются трещины. Подобная же ситуация создается на ступеньки окисла. При этом следует заметить, здесь действуют два процесса, способствующих образованию разрыва токоведущей дорожки. Первый из них обусловлен изменением ориентации зерен на плоской поверхности проводящей пленки, второй процесс связан с уменьшением поперечного сечения проводящей пленки на ступеньке окисла. Последнее вызывает возрастание плотности тока и скорости переноса вещества. [6]

Однако, несмотря на то, что использованию процессов электромиграции посвящено большое количество работ, до настоящего времени приемлемой теоретической модели процесса создать пока не удалось. Явление электропереноса вещества в тонких металлических пленках наблюдается при прохождении постоянного или пульсирующего тока. Ускорению электродиффузии способствуют дефекты металлической пленки в виде царапин, посторонних включений, сужения металлических дорожек, неравномерности по толщине пленки. Все эти факторы создают градиенты плотности тока и температуры, вследствие чего и ускоряется электродиффузия, конечным результатом которой является отказ прибора из-за разрыва металлизации.

Прежде всего, необходимы меры по снижению плотности тока, проходящего по металлическим дорожкам. Это может быть достигнуто как за счет выбора режима, так и за счет увеличения поперечного сечения проводника, которое предпочтительнее осуществлять, увеличивая ширину дорожек. Положительный эффект оказывают защитные покрытия на проводящих дорожках в виде различных стенок. Препятствуя образованию бугорков, диэлектрические покрытия способствуют снижению вероятности отказа за счет электродиффузии. Существенное влияние уделено качеству самой металлизации. Предпочтительны крупнозернистые пленки с ориентацией зерен, способствующей снижению эффекта электродиффузии.

Идеальным решением проблемы исключения электродиффузии было бы создание монокристаллических или аморфных проводящих пленок. Возможность создания металлизации с аморфной структурой более реально. Например, сплавы никеля с молибденом, вольфрамом при определенных условиях образуют аморфные структуры. Основным препятствием к использованию этих сплавов в качестве исходных материалов для металлизации является относительно высокое удельное сопротивление пленок. Однако очень низкие коэффициенты диффузии примесей в таких сплавах уже сейчас делают перспективным их применение в качестве барьерного слоя, препятствующего проникновению кремния в межэлементные соединения при многослойной металлизации. [8]

1.4.2 Механизмы коррозии и окисления металлизации

Проникновение влаги в герметизированный корпус, адсорбция ее на поверхности металлизации через поры и трещины в защитных покрытиях, а также наличие ионных загрязнений на поверхности кристалла способствует возникновению коррозии металлизации, носящей, как правило, электрохимический характер. При достижении относительной влажности внутри корпуса около 60% создаются благоприятные условия для адсорбирования на поверхности кристалла достаточного количества влаги, обеспечивающей высокую электролитическую проводимость.

Как уже было сказано, при производстве приборов имеется большое количество источников загрязнения поверхности кристалла ионами примеси. В первую очередь это загрязнения, поступающие в результате обработки пластин. Далее, это атмосфера герметизации, детали корпуса, клеевые составы, применяемые для посадки кристалла и пластмасса, используемая для герметизации приборов.

Наиболее опасным для Al являются ионы натрия, калия и хлора. Из-за амфотерности алюминий может коррозировать как в кислой, так и в щелочной среде. Как правило, в большей степени подвергаются коррозии металлические электроды, находящиеся под (-) потенциалом. Они разрушаются под действием (+) заряженных ионов. Такому же воздействию подвергаются (+) заряженные электроды, взаимодействуя с (-) ионами. Однако скорость коррозии (+) заряженных участников ниже, т. к. на них одновременно с коррозией идет активный процесс образования слоя окиси алюминия, препятствующий дальнейшему его разрушению. При наличии на поверхности кристалла ионов хлора коррозия положительных участков металлизации значительно ускоряется вследствие большой проникающей способности иона хлора сквозь толстую пленку окиси алюминия. Скорость коррозии существенно зависит от напряжения, подаваемого на схему. Разности потенциалов 5В и более достаточно для того, чтобы возникла интенсивная коррозия. Скорость коррозии зависит также от расстояния между электродами, температуры окружающей среды и концентрации ионов примеси на поверхности кристалла. Анализ отказов, возникающих в результате коррозии, показывает, что последняя возникает и развивается в первую очередь на границах зерен с образованием сплошных микротрещин, приводящих к обрыву металлизации. Применение стекла с повышенным содержанием фосфора значительно увеличивает коррозию, т. к. избыточный фосфор, взаимодействуя с водой, образует фосфорную кислоту, которая усиливает коррозию металлизации. Снижение весовой концентрации фосфора в фосфоросиликатном стекле, контактирующем с алюминиевой металлизацией до 5%, увеличивает среднюю наработку до отказа из-за коррозии более чем на три порядка. [9]

Параллельно с механизмом электродиффузии и электрохимической коррозии действует механизм деградации механических пленок, связанный с окислением Al, что ведет к увеличению омического сопротивления токоведущих дорожек. В результате роста окисной пленки на поверхности проводящих дорожек и образование окисных межзеренных прослоек, уменьшается объем и эффективное поперечное сечение проводника и, как следствие, увеличивается удельное сопротивление материала. Ухудшение условий прохождения электрического тока по токоведущим дорожкам нарушает температурный режим прибора, приводя к локальным перегревам, усилению электродиффузии и росту вероятности отказа за счет обрыва металлизации.

Кроме того, локальный перегрев токоведущих дорожек способствует укрупнению зерен и расстояние их до поперечного размера дорожки. В этих условиях происходит разрыв или отслаивание металлизации из-за больших растягивающих усилий, возникающих в местах разрастания зерен.

Действие данного механизма отказов существенно ослаблено за счет снижения плотности тока, протекающего по токоведущим дорожкам, а также добавлением в металлизацию специальных примесей, например натрия до 1% повышающих температуру рекристаллизации.

Особо опасным местом в ПП структуре является металлизация на ступеньках окисла. (рис. 5)

Рис. 5 Металлизация на ступеньке окисла.

1 - место концентрации напряжений и образование микротрещин.

При напылении вследствие резкого изменения ориентации центров кристаллизации металлическая пленка на ступеньках осаждается неравномерно. В зависимости от соотношения ширины окна, высоты ступеньки и угла, под которым поток напыляемого материала направляется к поверхности подложки, толщина стенки составляет от 15 до 35% от толщины плоской части металлизации. Из-за дефекта затенения в углах ступеньки образуются места с более тонким покрытием, имеющим повышенный уровень механических напряжений, в результате действия которых в них могут образовываться микротрещины. При последующей эксплуатации микротрещины, постепенно разрастаясь и объединяясь, приводят к обрыву металлизации.

Страницы: 1, 2, 3, 4, 5