скачать рефераты

скачать рефераты

 
 
скачать рефераты скачать рефераты

Меню

Проектирование информационной телекоммуникационной системы парома на трассе Калининград – Санкт-Петербург скачать рефераты

p align="left">· На орбитах, расположенных ниже 700 км, плотность атмосферы достаточно высока что вызывает уменьшение эксцентриситета и постепенное снижение высоты апогея. Дальнейшее уменьшение высоты орбиты приводит к повышенному расходу топлива увеличению частоты маневров для поддержания заданной орбиты.

· На высотах выше 1500 км располагается первый радиационный пояс Ван Аллена, в котором невозможна работа электронной бортовой аппаратуры.

Средневысотные орбиты (5000 - 15000 км над поверхностью Земли) находятся между первым и вторым радиационными поясами Ван Аллена. В системах, использующих КА, расположенные на таких орбитах, задержка распространения сигналов через спутник-ретранслятор составляет примерно 130 мс, что практически неуловимо для человеческого слуха и, следовательно, позволяет использовать такие спутники для радиотелефонной связи.

Системы, использующие спутники с высотой орбиты 700 - 1500 км, имеют лучшие энергетические характеристики радиолиний, чем системы с высотой орбит спутников, равной примерно 10000 км, но уступают им в продолжительности активного существования КА. Дело в том, что при периоде обращения КА около 100 мин (для низких орбит) в среднем 30 мин из них приходится на теневую сторону Земли. Поэтому бортовые аккумуляторные батареи испытывают от солнечных батарей приблизительно 5000 циклов заряда / разряда в год. Для круговых орбит с высотой 10000 км период обращения составляет около 6 ч, из которых лишь несколько минут КА проводит в тени Земли.

Следует также отметить, что спутник, находящийся на низкой орбите, попадает в зону прямой видимости абонента лишь на 8-12 мин. Значит, для обеспечения непрерывной связи любого абонента потребуется много КА, которые последовательно (при помощи шлюзовых станций или межспутниковой связи) должны обеспечивать непрерывную связь. С увеличением высоты орбиты КА зона прямой видимости спутника-ретранслятора и абонента увеличивается, что приводит к уменьшению количества спутников, необходимого для обеспечения непрерывной связи. Таким образом, с увеличением высоты орбиты увеличиваются время и размеры зоны обслуживания и, следовательно, требуется меньшее число спутников для охвата одной и той же территории.

Геостационарные космические системы с высотой орбит спутников примерно 36000 км обладают двумя важными преимуществами:

· Система, состоящая из трех геостационарных спутников, практически обеспечивает глобальный обзор земной поверхности.

· Спутники всегда находятся над определенной точкой Земли, что позволяет сэкономить на оборудовании слежения за КА.

Для нашей системы связи актуальнее использовать спутник на геостационарной орбите, что позволит охватить нужную площадь земной поверхности и избавиться от использования сложной аппаратуры слежения за ИСЗ.

2.2 Выбор частотного диапазона

Любая сеть спутниковой связи включает в себя один или несколько спутников-ретрансляторов, через которые и осуществляется взаимодействие земных станций (ЗС). В настоящее время наиболее широкое распространение получили спутники, работающие в диапазонах частот C (4/6 ГГц) и Ku (11/14 ГГц).

Рис. 1.2

Как правило, спутники диапазона С обслуживают довольно большую территорию, а спутники диапазона Ku - территорию меньше, но обладают более высокой энергетикой, что дает возможность для работы с ними применять ЗС с антеннами малого диаметра и маломощными передатчиками.

Для нашей системы выберем частотный диапазон Ku, с частотой передачи радиосигнала (на линии вверх), (на линии вниз).

2.3 Выбор технологии передачи данных

В состав любой ЗС входит радиочастотное и каналообразующее оборудование. Первое - это антенна и приемопередатчик, которые должны соответствовать типу выбранного спутника и обеспечивать работу каналообразующего оборудования. Как правило, эти два компонента ЗС поставляются в комплекте.

Каналообразующее оборудование определяет принцип работы ЗС и всей сети. В настоящее время существуют четыре основные технологии для сетей спутниковой связи. Все они имеют свои достоинства и недостатки, и ни одна из них не является универсальной. Для повышения эффективности работы во многих современных сетях успешно сочетаются несколько технологий одновременно. Основное различие между ними - способ использования ресурса спутникового ретранслятора. Рассмотрим эти технологии:

· SCPC (Single Channel Per Carrier) активно применяют для построения небольших сетей с интенсивным трафиком. Каждая ЗС, реализующая SCPC, имеет выделенный постоянный сегмент емкости спутникового ретранслятора и поддерживает постоянное соединение. Основное достоинство данной технологии состоит в том, что она гарантирует необходимую пропускную способность канала спутниковой связи, а основной недостаток - отсутствие в ней возможности динамического перераспределения ресурса ретранслятора между узлами сети.

· DAMA (Demand Assigned Multiple Access) предоставляет ресурс спутникового ретранслятора по требованию. В сетях с технологией DAMA канал связи выделяется пользователю только на время проведения сеанса связи, что значительно экономит ресурсы спутникового ретранслятора. Структура канала в этой сети аналогична структуре канала SCPC. В некоторых реализациях технологии DAMA предусмотрена возможность установления соединений с разной пропускной способностью для разных сеансов связи. DAMA оптимальна для создания телефонных сетей с полносвязной топологией. Ресурс ретранслятора распределяется центральной станцией сети, что можно считать основным недостатком технологии, так как функционирование всей сети зависит от состояния одной этой станции.

· TDMA (Time Division Multiple Access) предоставляет множеству станций динамический доступ к общему каналу с временным разделением. В отличие от технологии DAMA с ее достаточно большим временем установления соединения такой доступ предоставляется значительно быстрее. Однако ЗС сети TDMA стоят довольно дорого, поскольку любая из этих станций - даже с самым минимальным трафиком - должна передавать данные со скоростью, равной общей пропускной способности разделяемого по времени канала. В сетях TDMA центральная управляющая станция, как правило, отсутствует.

· TDM/TDMA (Time Division Multiplexing/Time Division Multiple Access) - комбинированная технология сетей с топологией типа «звезда». В сети TDM/TDMA центральная ЗС связывается со станциями пользователей при помощи одного или нескольких закрепленных каналов TDM (с временным мультиплексированием), а станции пользователей осуществляют доступ к центральной ЗС через каналы TDMA. Поскольку все станции пользователей напрямую взаимодействуют только с центральной ЗС, появляется возможность применять довольно маломощные станции, скомпенсировав недостаток их энергетики использованием антенны большого диаметра и мощного передатчика на центральной ЗС. За счет такого дисбаланса параметров станций удается существенно снизить стоимость проектов с большим числом станций пользователей. Обязательное наличие центральной ЗС (которая выполняет функцию концентратора сети) обусловливает высокие требования к ее готовности - ведь от состояния этой станции зависит функционирование всей сети.

В сети TDM/TDMA данные, передаваемые между двумя любыми станциями пользователей, дважды проходят через спутник-ретранслятор («двойной скачок»). При этом возникает существенная (1-2 с) задержка сигнала, которая делает данную сеть малопригодной для использования телекоммуникационных приложений, чувствительных к таким задержкам.

Поддержка рассмотренных выше основных технологий реализована во многих современных аппаратных средствах спутниковой связи. Очень часто имеет смысл применять в одной сети несколько технологий одновременно. Так, например, для построения крупномасштабной корпоративной телекоммуникационной инфраструктуры можно рекомендовать сочетание технологий TDM/TDMA и DAMA. Последняя из них обеспечит телефонную и факсимильную связь, сделает возможной организацию аудио- и видеоконференций, в то время как с помощью подсети TDM/TDMA можно будет осуществлять передачу данных.

Вторая глава посвящена выбору параметров спутника: формы и высоты орбиты, частотного диапазона, в котором будет транслироваться сигнал и технологии передачи данных.

Для нашего проекта предпочтение отдано ИСЗ на геостационарной орбите, что позволит охватить нужную площадь земной поверхности и избавиться от использования сложной аппаратуры слежения за траекторией спутника.

Передача сигнала будет осуществляться в Ku-диапазоне (11/14 ГГц), что дает возможность для работы с антеннами малого диаметра и маломощными передатчиками.

Для передачи информации можно рекомендовать сочетание технологий TDM/TDMA и DAMA. Последняя из них обеспечит телефонную и факсимильную связь, сделает возможной организацию аудио- и видеоконференций, в то время как с помощью подсети TDM/TDMA можно будет осуществлять передачу данных.

3. Энергетический расчет спутниковой линии

Основная особенность спутниковых линий связи - большое затухание радиосигнала на участках линии. Так при высоте орбиты ИСЗ в 36000 км затухание радиосигнала на участке достигает 200 дБ. Кроме этого, радиосигнал претерпевает случайные изменения вследствие поглощения радиоволн в атмосфере (дождь, снег, туман), их рефракции и деполяризации, Фарадеевского вращения плоскости поляризации. На приёмные устройства воздействуют помехи в виде излучений космоса, Солнца, Земли и др. планет.

Правильный и точный учет всех особенностей спутниковой связи позволяет выполнить оптимальное проектирование системы связи, обеспечить её надежную работу в наиболее сложных условиях и в то же время исключить излишние энергетические затраты, приводящие к неоправданному усложнению наземной и бортовой аппаратуры.

В энергетическом смысле для линии «ЗС-СР-ЗС» (земная станция - спутник-ретранслятор - земная станция) оба участка напряженные и неравнозначные: первый - из-за стремления уменьшить мощность передатчика земной станции и относительно низкой чувствительности приемника ретранслятора, второй - из-за ограничений на массу, габариты и энергетику ретранслятора, т.е. ограничения на мощность бортового передатчика.

Для участка ЗС-СР мощность сигнала на входе бортового приёмника можно определить из первого уравнения передачи

, [дБ]. (3.1)

Аналогично для участка СР-ЗС

, [дБ], (3.2)

где  - потери в антенно-волноводном тракте передачи (приёма) земной станции или бортового ретранслятора;

 - коэффициент передачи по мощности антенно-волноводного тракта передачи или приёма;

 - дополнительное затухание радиосигнала на участке ЗС-СР (СР-ЗС).

Потери в антенно-волноводном тракте зависят от его конструкции и диапазона рабочих частот. Обычно при расчетах принимают , , .

3.1 Расчёт затухания радиосигнала на участках линии спутниковой связи

Полное затухание радиосигналов в линиях спутниковой связи определяется потерями в свободном пространстве  и дополнительными потерями , обусловленными особенностями функционирования систем спутниковой связи:

, [дБ]. (3.3)

Потери энергии радиоволн при распространении в свободном пространстве определяются в соответствии с выражением

, [дБ], (3.4)

где  - наклонная дальность на участках радиолинии КС, определяемая как

, (3.5)

где =6371 км - радиус Земли (при её аппроксимации сферой);

H - высота орбиты ИСЗ (для геостационарной орбиты Н = 35875 км, для высокоэллиптических орбит Н - высота апогея);

 - топоцентрический параметр, который может быть определен из выражения

(3.6)

где,  - географическая широта подспутниковой «точки»;

 - географическая широта земной станции;

; (3.7)

 - географическая долгота ЗС;

 - географическая долгота подспутниковой «точки».

При расчете энергетических параметров сети спутниковой связи  следует выбрать максимальным для заданной зоны обслуживания. Для выполнения этого условия из исходных данных выберем географические координаты ЗС и СР таким образом, чтобы ЗС находилась на максимальном расстоянии от подспутниковой «точки» для заданной зоны обслуживания.

Имеем: , , ,

Отсюда,

Дополнительное затухание радиосигнала на участках радиолинии КС  зависит от многих факторов, проявляющихся независимо друг от друга, и может быть представлено в виде суммы:

, (3.8)

где  - затухание в атмосфере без осадков;

 - затухание в осадках;

 - затухание, учитывающее неточность наведения антенн;

 - затухание за счет деполяризации сигнала в среде распространения.

Затухание в атмосфере без осадков определяется главным образом поглощением в тропосфере и имеет ярко выраженный частотно-зависимый характер с резонансными пиками на частотах 22 и 165 ГГц (для водяных паров) и 60 и 120 ГГц (для кислорода).

Потери энергии радиосигнала в атмосфере без осадков не зависят от времени (имеют место в течение 100% времени работы радиолинии) и определяются по графикам (рис. 3.1) в зависимости от частоты радиосигнала Найдём на линии вверх  () и вниз  ().

Таким образом,  и . Затухание сигнала в осадках зависит от вида гидрометеоров (дождь, снег, туман), размеров зоны их выпадения, интенсивности осадков в зоне и т.д. В диапазонах частот  величина затухания радиосигнала в осадках составляет . Поэтому примем .

Рис. 3.1. Графики для определения затухания радиосигнала в атмосфере без осадков

Дополнительное затухание сигнала за счет неточного наведения антенн ЗС и СР друг от друга  обусловлено рефракцией радиоволн, что приводит к образованию угла между истинным и кажущимся направлениями ИСЗ. Угловое отклонение, вызванное рефракцией, составляет несколько десятых долей градуса и может быть скомпенсировано при автоматическом наведении антенн по максимуму сигнала. При других методах наведения с учетом погрешностей конструкции устройства наведения можно принять .

Поляризационные потери на участках линии КС складываются из потерь, вызванных несогласованностью поляризации, потерь, связанных с эффектом Фарадея, и потерь из-за деполяризации радиоволн в осадках.

Потери, вызванные несогласованностью поляризации, имеют существенное значение при использовании на ЗС и СР узконаправленных антенн и применении линейной поляризации. Использование круговой поляризации позволяет эти потери сделать пренебрежимо малыми. Потери, обусловленные эффектом Фарадея, проявляются при использовании сигналов с линейной поляризацией, зависят от частоты и пренебрежимо малы. Потери из-за деполяризации радиоволн при осадках больше характерны для сигналов с круговой поляризацией, носят статистический характер, связанный со статистикой выпадения дождей, и могут оказывать заметное влияние на энергетику систем спутниковой связи на частотах выше 12 ГГц.

При использовании на линиях КС круговой поляризации сигналов результирующие поляризационные потери принимают .

Таким образом, получаем ослабление радиосигнала на участке вниз

и на участке вверх

.

Хорошо видно, что ослабление на участке вниз меньше, чем на участке вверх на 2 дБ. Такое отличие связано с тем, что радиосигнал на более высоких частотах претерпевает большее затухание, чем на частотах ниже. Именно этим обусловлен тот факт, что для значения частоты радиосигнала на участке СР-ЗС всегда выбирается меньшее значение, чем на участке ЗС-СР. Ведь на борту ИСЗ энергетика жёстко ограничена, что сильно оказывает влияние на максимальную выходную мощность передатчика ретранслятора связи.

3.2 Расчёт энергетических параметров приёмных устройств

Приемное устройство СВЧ может характеризоваться некоторыми энергетическими параметрами: реальной чувствительностью, пороговой чувствительностью, коэффициентом шума, шумовой температурой и эффективной температурой. Все эти параметры, как известно, имеют определенную связь между собой. Три последних из них характеризуют линейную часть приемного устройства от антенны до детектора. В системах спутниковой (космической) связи наибольшее распространение получили два последних параметра.

Страницы: 1, 2, 3