скачать рефераты

скачать рефераты

 
 
скачать рефераты скачать рефераты

Меню

Принципы и алгоритмы информационных измерительных систем скачать рефераты

p align="left">Основные функции вычислительных средств, используемые в АИИиК:

1. Фильтрация - выявление и устранение отклонения сигналов от заданного уровня, внесение поправок, учёт влияния внешних факторов, вычисление результатов косвенных, совокупных и совместных измерений, определение статистических характеристик измеряемых величин, оценка достоверности результатов измерений.

2. Накопление и хранение полученной информации, хранение программ, реализацию алгоритмов обработки, хранение планов проведения эксперимента в зависимости от полученных результатов, сервисная обработка измерительной информации.

3. Управление блоками (по программе) с целью организации запроса, приоритетов, диалог режима с операторами, обращение к памяти, контроль работоспособности блоков, включая самопроверку метрологических характеристик.

Основные положения по созданию и функционированию АС

Создание АС осуществляется в плановом порядке в соответствие с Действующими положениями и нормативными актами. Для вновь строящихся, реконструированных, расширяющихся, технически-перевооружаемых и др. объектов автоматизации, для которых предусматриваются работы по кап. строительству, создание АС включается в планы и в проекты по этому виду работ.

Работы по созданию АС на действующих объектах выполняются на основании договоров.

Планирование и разработку АС осуществляют аналогично правилам, установленным для продукции единичного производства. ТЗ на создание АС является основным документом, определяющим порядок создания и требования к АС. Разработку АС и её приёмку проводят в соответствии с ТЗ. Создание АС осуществляют специализированные научные институты, проектно-конструкторские организации в соответствии с ТЗ.

При созданных АС обращают внимание на следующее:

1. Интеграцию экономических и инородных процессов, технических, программных и организационно-методических средств.

2. Развитие системного и программно-целевого подхода, планирование и автоматизация работы объекта в процессе получения и обработки информации на объекте автоматизации.

3. Углубление взаимодействия человек и вычислительной техники на основе диалоговых методов и средств, автоматизирующих рабочих мест и интеллектуальных терминалов.

4. Построение сетей ЭВМ на базе неоднородных вычислительных средств.

5. Индустриализация процессов создания АС, развития САПР и _ типовых элементов АС.

6. Построение информационного фонда в виде распределённой по объектам и уровням иерархии автоматизированной базы данных.

7. Минимизация документооборота, замену его передачей текущей информации по каналам связи и представление её на устройствах отображения.

8. Максимальная автоматизация, формирование первичных исходных сведений.

9. Создание гибких систем управления, способных адаптироваться к изменяющимся условиям производства.

Показатели надёжности ремонтируемых (восстанавливаемых) изделий

Процесс эксплуатации восстанавливаемых изделий отличается от процесса невосстанавливаемых тем, что наряду с потоком отказов элементов изделий присутствуют стадии ремонта отказавших элементов, т.е. поток восстановления элементов. Характеристики надёжности восстанавливаемых систем описываются потоком отказов элементов и потоком восстановления элементов.

Для описания потоков отказов используется также интенсивность отказов (?) и среднее время наработки на отказ (Тср).

1. Параметром потока отказов называется среднее количество отказов ремонтируемого изделия в единицу времени, взятое для рассматриваемого промежутка времени:

,

где - число отказов в интервале ;

- количество работавших изделий в промежутке ;

2. Наработка на отказ - среднее значение наработки ремонтируемого изделия между отказами:

,

где n - число изделий в партии;

- среднее значение наработки на отказ i-го изделия;

,

где - среднее время исправной работы i-го изделия между (j-1) и (j+1);

m - число отказов i-го изделия

Сложные устройства, состоящие из большого числа элементов, обычно подчиняются экспоненциальному закону надёжности, при котором вероятность безотказной работы рассчитывается:

,

где e = 2,72;

?1 - ?n - интенсивность отказов комплектующих изделий.

Параметры АЦП и ЦАП

1. Максимальное напряжение: Umax - входное для АЦП, выходное для ЦАП.

2. Число разрядов кода n.

3. Разрешающая способность:

где - максимальный вес входного кода

Относительное значение разрешающей способности:

,

4. Погрешность преобразования:

- абсолютная:

- относительная:

Свойства и показатели АС

Показатели:

1. Эффективность АС - свойство АС, характеризуемое степенью достижения целей, поставленных при её создании.

2. Показатели эффективности АС - мера или характеристика для оценки эффективности АС.

3. Совместимость АС - комплексное свойство двух или более АС, характеризуемое их способностью взаимодействовать при их функционировании (совместимость АС включает техническую, программную, информационную, организационную, лингвистическую и при необходимости метрологическую совместимость):

- техническая совместимость АС частная совместимость АС, характеризуемая возможностью взаимодействия технических средств этих систем;

- программная совместимость АС - частная совместимость АС, характеризуемая возможностью работы программ одной системы в другой и обмена программами, необходимыми при взаимодействии АС;

- информационная совместимость - частная совместимость АС, характеризуемая возможностью использования данных и обмена данными между системами;

- организационная совместимость - частная совместимость АС, характеризуемая согласованностью правил действия их персонала, регламентирующих взаимодействие этих АС;

- лингвистическая совместимость - частная совместимость АС, характеризуемая возможностью использования одних и тех же языковых средств общения персонала с комплексом средств автоматизации (КСА) этих автоматизированных систем;

- метрологическая совместимость - частная совместимость АС, характеризуемая тем, что точность результатом измерений, полученных в одной АС, позволяет использовать их в другой.

4. Адаптивность - способность АС способность АС изменяться для сохранения своих эксплуатационных показателей в заданных пределах при изменениях внешней среды.

5. Надёжность АС - комплексное свойство АС сохранять во времени в установленных пределах значения всех параметров, характеризующих способность АС выполнять свои функции в заданных режимах и условиях эксплуатации.

6. Живучесть АС - свойство АС, характеризуемое способностью выполнять установленный объём функций в условиях взаимодействий внешней среды и отказов компонентов системы в заданных пределах.

7. Помехоустойчивость АС - свойство АС, характеризуемое способностью выполнять свои функции в условиях воздействия помех, в частности, электромагнитных полей.

Понятие автоконтроля. Системы автоматического контроля (САК)

Автоконтроль устанавливает соответствие между состоянием объекта контроля и заданной нормой без непосредственного участия человека.

Соответствие может устанавливаться для данного или будущего состояния.

Необходимое условие осуществления автоконтроля - знание установленной нормы. Норма может быть выражена в количественной и качественной форме.

Система автоконтроля - комплекс устройств, осуществляющих автоматический контроль одной или нескольких (большого количества) величин, требующих значительной обработки информации для суждения об отклонении от установленной нормы.

В реальных системах устанавливаемое допустимое отклонение от нормы во много раз больше погрешностей измерительных систем. Поэтому информационная ёмкость САК соответственно меньше.

Демультиплексор

Устройство, в котором сигналы с одного информационного входа поступают в желаемой последовательности по нескольким выходам в зависимости от кода на адресных шинах.

Таблица переключений

Адресный вход

y1

y2

0

x

0

1

0

x

Принципы создания АС

АС создаются в соответствии с ТЗ, являющимся основным исходным документом, на основании которого проводят создание АС и приемку её заказчиком. При создании АС руководствуются принципами системности, развития «открытости», совместимости, стандартизации и эффективности.

Принцип системности заключается в том, что при декомпозиции должны быть установлены такие связи между структурными элементами системы, которые обеспечивают цельность АС и её взаимодействие с др. системами.

Принцип развития заключается в том, что, исходя из перспектив развития объекта автоматизации, АС должна создаваться с учетом возможности пополнения и обновления функций и состава АС без нарушения её функционирования.

Принцип совместимости заключается в том, что при создании системы должны быть реализованы информационные интерфейсы, благодаря которым она может взаимодействовать с др. системами в соответствии с установленными правилами.

Принцип стандартизации заключается в том, что при создании системы должны быть рационально применены типовые унифицированные и стандартизованные элементы, и проектные решения, а также пакеты прикладных программ и комплексные компоненты.

Принцип эффективности заключается в достижении рационального соотношения между затратами на создание АС и целевыми эффектами включая конечные результаты, полученные в результате автоматизации.

При модернизации объектов автоматизации должно быть предусмотрено проведение работ по модернизации АС.

Элементы цифровой техники

Цифровой сигнал называют кодовой информацией или кодовым словом. Для обработки и преобразования кодовой информации выполняются логические операции, которые осуществляются в логических элементах.

Любую логическую функцию можно выполнить с помощью логических операций «и» или «не» - элементарные операции.

Входные, выходные сигналы могут принимать 1-0 из двух значений «логический 0» и «логическая 1». При конкретной практической реализации эти сигналы представляются различными функциональными величинами.

Знание абсолютной величины сигнала при этом не требуется. Достаточно знать более положительную или более отрицательную величину.

Один из этих уровней принимается за 0, другой за 1 в зависимости от соотношения. Различают соглашение положительной логики и отрицательной. Есть возможность выполнить любую сложную функцию с помощью объединения логических элементов.

По виду входных и выходных сигналов логические элементы делятся на потенциальные и импульсные.

В потенциальных элементах сигналы 1 и 0 представляются двумя уровнями, а в импульсных - наличием или отсутствием импульсов.

Наибольшее распространение получили потенциальные элементы.

Логические устройства разделяют на два класса:

• комбинационные;

• последовательные.

Устройство называется комбинационным, если его выходные сигналы в некоторые моменты времени определяются входными, имеющими место в этот же момент времени.

В последовательных устройствах обязательно имеются элементы памяти. Состояние их зависит от предыстории входного сигнала.

Применение ЭВМ для АИИ и К

1. Экономический (высокая стоимость существующих методов контроля, а также желание исключить вызываемые процессом контроля задержки и простоя).

2. Социальный (высокие требования потребителей к качеству продукции, а также повышение юридической ответственности руководителя за качество продукции, субъективизм при оценке качества продукции).

3. Технологический - определяется рядом существующих достижений в области автоматизации, широким использованием микропроцессорной техники, совершенствованием бесконтактных методов контроля.

Рабочие станции - большие электронные машины, предназначенные для предприятий, фирм, и прочих организаций. Отличаются высокой стоимостью, большой ёмкостью памяти и широким набором выполняемых функций (решение сложных технических и научных задач, а также обработка больших объёмов данных).

Серверы (компьютеры-распорядители) - осуществляют контроль локальной сети предприятия или узла сети Internet. Обладает мощным процессором, большой оперативной памятью и несколькими объёмами с жёсткими дисками (дублирующими друг друга).

ПК (настольные компьютеры) - сравнительно недорогие, легко модернизируются. Используются также портативные компьютеры (ноутбуки).

Специализированные мини и микроЭВМ - ориентированы на конкретный тип объекта управления и больше используются как встраиваемые. Используются для ЧПУ-станков:

- электроника НЦ 31, электроника МЦС 2101 и т.д.

Мини и микроЭВМ общего назначения, а также управляющие мини и микроЭВМ имеют в своём составе широкий набор устройств сопряжения, ввода и вывода информации и обладает возможностью выполнения больших объёмов вычислительных операций. Используются при решении сложных задач управления, хранения и обработки больших объёмов измерительной информации и т.д.: СМ-1810, СБ-41, СМС-121-2.

В данной структуре информация передаётся в двух направлениях: данные о параметрах ТП, информация о составе продукции и другие сведения технологического характера передаются снизу вверх, при этом большая часть информация фильтруется и преобразуется, в противоположном направлении передаются команды управления.

Триггеры

Триггер - устройство, которое имеет два устойчивых состояния (1 и 0) и может переходить из одного состояния в другое под воздействием входных сигналов.

Входы триггера разделяют на информационные и управляющие.

Информационные - используются для управления состоянием триггера.

Управляющие - используются для предварительной установки триггера в некоторое состояние и для синхронизации.

Триггеры классифицируют по следующим признакам:

1. По способу приёма информации:

асинхронные;

синхронные.

Асинхронный триггер изменяет своё состояние непосредственно в момент появления соответствующего информационного сигнала.

Синхронные триггеры реагируют на информационные сигналы только при наличии соответствующего сигнала на так называемом входе синхронизации.

Синхронные триггеры в свою очередь делят на статические и динамические. Статические воспринимают информационные при подаче на вход «С» (синхронизации) 1 или 0. Динамические воспринимают сигналы при изменении на «С» от 0 к 1 или от 1 к 0.

Статические триггеры в свою очередь делятся на одноступенчатые и двухступенчатые.

2. По принципу построения. Способ построения зависит от количества базовых логических элементов.

3. По функциональным возможностям:

С раздельной установкой состояния 0 и 1. RS - триггеры.

Универсальные. YK - триггеры.

С приёмом информации по одному входу. D - триггеры.

Со счётным входом. Т - триггеры.

Страницы: 1, 2