скачать рефераты

скачать рефераты

 
 
скачать рефераты скачать рефераты

Меню

Полупроводниковые материалы скачать рефераты

p align="left">переводят в двуокись согласно реакции:

GeCl4+2H2O - GeO2 + 4HC1.

Элементарный Ge получают путем восстановления двуокиси чистым водородом:

GeO2 + 2Н2 - Ge +2Н2О.

Процесс водородного восстановления проводят в электрических печах при Т=650…700 °С с использованием графита в качестве тигельного материала.

2.3 Метод Чохральского и метод зонной плавки

Монокристаллы кремния для микроэлектроники и приборостроения в основном получают методами Чохральского и бестигельной зонной плавки (БЗП).

По методу Чохральского производят вытягивание вверх на затравку монокристалла из ванны с расплавом. Нагрев обычно осуществляют при помощи СВЧ излучения. Для снятия возникающих напряжений используют дополнительную печь, через которую проходит выращиваемый кристалл и отжигается.

Рисунок 2.2 - Схема установки для выращивания монокристаллов по методу Чохральского:
1 - тигель с расплавом,
2 - кристалл,
3 - печь,
4 - холодильник,
5,6 - механизм вытягивания.

Зонная плавка заключается в прогонке зоны расплава по длине заготовки монокристалла, одновременно в зоне расплава концентрируются примеси и происходит очистка кристалла, конечную часть которого затем удаляют. Нагрев осуществляется индукционным, радиационно-оптическим или другим методом.

Рисунок 2.3 - Схема устройства для зонной плавки:

1 - твердая фаза,

2 - расплав,

3 - нагреватель, (стрелкой показано направление движения нагревателя).

Перспектива дальнейшего развития обоих методов не вызывает сомнения. Первый обеспечивает высокую степень кристаллического совершенства и отличается достаточно простым оборудованием и технологией. Второй при довольно сложном aппapaтуpнoм оформлении позволяет получать суперчистые монокристаллы. Последние применяют для спецприборов и в качестве исходного материала для нейтронной: легирования, в результате чего получают кремний n_типа проводимости с чрезвычайно высокой степенью однородности (-3%) удельного сопротивления по объему монокристалла.

Несмотря на очевидные преимущества монокристаллов, выращенных методом БЗП, большую часть кремния для ИС производят методом Чохральского, хотя при выращивании монокристаллов из кварцевого тигля кремний насыщается кислородом и другими примесями. Преимущества метода Чохральского обусловлены возможностью увеличения размеров кристаллов, достижением повышенных требований к и структурному совершенству.

2.4 Основные физико-химические и электрофизические свойства

Чистый германий обладает металлическим блеском, характеризуется относительно высокими твердостью и хрупкостью. Подобно кремнию он кристаллизуется в структуре алмаза.

Кристаллический германий химически устойчив на воздухе при комнатной температуре. При нагревании на воздухе до температуры выше 650 °С он окисляется с образованием двуокиси GeO2. В большинстве случаев образующаяся двуокись германия представляет собой смесь аморфной и гексагональной модификаций, которые обладают заметной растворимостью в воде. Из-за нестабильности свойств собственный окисел на поверхности германия, в отличие от собственной окисла кремния, не может служить надежной защитой материала при проведении процессов планарной технологии (фотолитографии и локальной диффузии).

Германий обладает относительно невысокой температурой плавления (936 °С) и ничтожно малым давлением насыщенного пара при этой температуре. Отмеченное обстоятельство существенно упрощает технику кристаллизационной очистки и выращивания монокристаллов. Даже в расплавленном состоянии германий практически не взаимодействует с графитом и кварцевым стеклом, что позволяет использовать их в качестве тиглей и лодочек при проведении металлургических процессов.

Таблица 2.1 - Основные свойства германия и кремния гексагональной модификации

Жидкий германий обладает способностью интенсивно поглощать водород, предельная растворимость которого в твердой фазе не превышает, однако, 4-1024м~3, причем водород является электрически нейтральной примесью.

Ширина запрещенной зоны германия и кремния изменяется с температурой по линейному закону: (Эв). В нормальных условиях чистый Ge прозрачен для электромагнитного излучения с , чистый Si - для излучения с .

2.5 Осаждение эпитаксиальных слоев кремния

В планарной технологии кремниевых приборов и интегральных микросхем важную роль играют процессы эпитаксиального осаждения тонких слоев. Наиболее распространенный вариант промышленной технологии получения кремниевых эпитаксиальных слоев базируется на процессе водородного восстановления тетрахлорида кремния в соответствии с реакцией

SiCl4(г)+2H2(г)=Si(тв)+4HCl(г)

Рисунок 2.4 - Схема реактора для эпитаксиального наращивания кремния:

1_корпус реактора; 2_подложка; 3_графитовая подставка;

4_высокочастотный индуктор.

Реакция протекает в кварцевых реакторах или температурах порядка 1200 °С. Подложками служат монокристаллические пластины кремния, вырезаемые из слитков и подвергаемые механической и химической полировке. Подложки размещаются на графитовой подставке, нагреваемой токами высокой частоты (рисунок 2.4). Перед началом осаждения подложки подвергаются газовому травлению непосредственно в реакторе путем добавления паров НСl в поток газа-носителя. Травление, происходящее по обратимой реакции, позволяет получить чистую неокисленную поверхность полупроводника. Легирование слоев осуществляют из паров соединений, содержащих примесные элементы (например, РС13, BBr3, AsH3 и т.п.).

Эпитаксиальное выращивание структур с р-n_переходами получило широкое распространение для изоляции элементов интегральных микросхем областью объемного заряда, протяженность которой возрастает при подаче обратного смещения на р-n_переход.

2.6 Применение в полупроводниковых приборах и ИС

В начале развития полупроводниковой технологии широкое применение получил германий. Этому способствовали более низкая температура плавления, а значит более доступная технология очистки, а также высокая подвижность носителей заряда в веществе. В дальнейшем была усовершенствована технология получения и очистки кремния и в настоящее время кремний - базовый материал при изготовлении пленарных транзисторов и ИС.

Кремний имеет следующие преимущества перед германием:

а) большая ширина запрещенной зоны Ео, что обеспечивает более низкие концентрации собственных и неосновных носителей . Это дает возможность создавать резисторы с более высокими номиналами; обеспечивать меньшие токи утечки в p-n_переходе; использовать более высокие рабочие температуры и удельные нагрузки;

б) кремний более устойчив к загрязнениям поверхности;

в) пленка SiO2 имеет коэффициенты диффузии примесей меньше, чем кремний, и обеспечивает маскирующие и пассивирующие свойства.

Германий используется для изготовления большого числа полупроводниковых приборов: выпрямительных диодов (на прямые токи 0,3… 1000 А при падении напряжения не более 0,5 В), лавинно - пролетных и туннельных диодов, варикапов, точечных высокочастотных, импульсных и СВЧ-диодов. В импульсных диодах для достижения высокой скорости переключения требуется материал с малым временем жизни неравновесных носителей заряда. Для этой цели используют Ge, легированный золотом.

Германий используется для изготовления сплавных биполярных транзисторов с граничной частотой 600 МГц. Нанесение пленочной изоляции из SiO2 позволяет изготавливать Ge - транзисторы по планарной технологии.

Благодаря относительно высокой подвижности германий применяется для изготовления датчиков Холла.

Оптические свойства германия позволяют использовать его для изготовления фотодиодов, фототранзисторов, оптических линз с большой светосилой (для ИК-лучей), оптических фильтров, модуляторов света, а также счетчиков ядерных частиц.

Рабочий диапазон температур германиевых приборов -60… +70 °С.

Кремний применяется практически для всех типов полупроводниковых приборов и интегральных схем: диодов (выпрямительных, импульсных, СВЧ и др), биполярных транзисторов (низкочастотных, высокочастотных, мощных, маломощных), полевых транзисторов, приборов с зарядовой связью. Плоскостные Si_диоды могут выдерживать обратные напряжения до 1500 В и пропускать ток в прямом направлении до 1500 А. Рабочие частоты планарных транзисторов могут достигать 10 ГГц.

Из кремния изготавливают большинство стабилитронов и тиристоров. Кремниевые стабилитроны в зависимости от степени легирования материала имеют напряжение стабилизации от 3 до 400 В.

Широкое применение находят кремниевые фоточувствительные приборы, особенно фотодиоды с высоким быстродействием. Спектр фоточувствительности кремниевых фотодетекторов (0,3…1,1 мкм) хорошо согласуется со спектром излучения многих полупроводниковых источников света.

Кремниевые фотоэлементы для преобразования солнечной энергии в электрическую (солнечные батареи) используются в системах энергоснабжения космических аппаратов и имеют к.п.д.10…12%.

Кремний, легированный литием, используется для детекторов ядерных излучений. Кремний используется также для изготовления датчиков Холла и тензодатчиков. В тензодатчиках используется сильная зависимость удельного сопротивления от механических деформаций.

Верхний температурный предел работы Si_приборов - 180…200 °С. Приборы на кремнии отличаются большой надежностью.

Использовались источники [1, 2, 4, 5].

3. Методы контроля параметров полупроводниковых материалов: проводимости, концентрации, подвижности, ширины запрещенной зоны

3.1 Проводимость полупроводников

При приложении электрического поля к однородному полупроводнику в последнем протекает электрический ток. При наличии двух типов свободных носителей - электронов и дырок - проводимость ? полупроводника будет определяться суммой электронной ?n и дырочной ?p компонент проводимости ?=?n+?p.

Величина электронной и дырочной компонент в полной проводимости определяется классическим соотношением:

(3.1)

где и - подвижности электронов и дырок соответственно.

Для легированных полупроводников концентрация основных носителей всегда существенно больше, чем концентрация неосновных носителей, поэтому проводимость таких полупроводников будет определяться только компонентой проводимости основных носителей. Так, для полупроводника n-типа:

(3.2)

Величина, обратная удельной проводимости, называется удельным сопротивлением:

(3.3)

Здесь ? - удельное сопротивление, обычно измеряемое в единицах [Ом·см]. Для типичных полупроводников, используемых в производстве интегральных схем, величина удельного сопротивления находится в диапазоне ? = (1 ? 10) Омсм.

В отраслевых стандартах для маркировки полупроводниковых пластин обычно используют следующее сокращенное обозначение типа: КЭФ - 4,5. В этих обозначениях первые три буквы обозначают название полупроводника, тип проводимости, наименование легирующей примеси. Цифры после букв означают удельное сопротивление, выраженное во внесистемных единицах, - Ом·см. Например, ГДА - 0,2 - германий, дырочного типа проводимости, легированный алюминием, с удельным сопротивлением ? = 0,2 Ом·см; КЭФ - 4,5 - кремний, электронного типа проводимости, легированный фосфором, с удельным сопротивлением ? = 4,5 Ом·см.

3.1.1 Преимущества и недостатки методов исследования проводимости полупроводников

При определении электропроводности методом термозонда в отличие от метода Холла нельзя вычислить подвижности дырок и электронов, т.е. методом термозонда невозможно определить какие-нибудь точные значения. Но метод термозонда уступает методу Холла в простоте определения типа электропроводности, нет сложных просчетов и сам опыт не предоставляет собой довольно сложные лабораторные исследования. Недостатком метода вольтамперной характеристики является то, что при определении проводимости этим методом желательно, чтобы поверхность образца полупроводника была шероховатой (шлифованной), а не полированной, т. к. при шлифованной поверхности осциллограмма более четко выражена и по ней легче определить тип проводимости образца.

3.2 Определение подвижности

Под действием внешнего электрического поля носители заряда приобретают некоторую скорость направленного движения (скорость дрейфа) и создают электрический ток. Отношение средней установившейся скорости направленного движения к напряженности электрического поля называют подвижностью носителей заряда:

? = . (3.4)

В полупроводниках следует различать подвижность электронов ?п и подвижность дырок ?р. С учетом двух типов носителей заряда выражение плотности тока принимает вид:

J = en0?пE + ep0?pE, (3.5)

где п0 и р0 - равновесные концентрации электронов и дырок в полупроводнике.

С помощью закона Ома из (1) легко получить формулу для удельной проводимости полупроводника:

? = en0?п + ep0?p. (3.6)

В примесных полупроводниках, как правило, одним слагаемым из выражения (2) можно пренебречь. Например, при достаточно большой концентрации доноров в полупроводнике вклад дырок в электропроводность ничтожно мал. В большинстве случаев подвижность дырок меньше подвижности электронов.

3.2.1 Факторы, определяющие подвижность

Согласно экспериментальным данным у некоторых полупроводников подвижность носителей заряда может быть на несколько порядков больше, чем у металлов, то есть электроны в плохо проводящих кристаллах могут двигаться более свободно, чем в металлах.

Дрейфовая скорость, а значит и подвижность носителей заряда, тесно связаны с их длиной свободного пробега в кристалле:

? =·?0 = ·, (3.7)

где m* - эффективная масса носителей заряда; - тепловая скорость.

Большая подвижность может быть обусловлена малой эффективной массой носителя заряда m* и большим значением временем свободного пробега или точнее времени релаксации ?0. В полупроводниках эффективная масса носителей заряда может быть как больше, так и меньше массы свободного электрона.

Время релаксации, характеризующее уменьшение тока после снятия поля, определяется процессами рассеяния движущихся в полупроводниках электронов. Чем больше частота столкновений и чем они интенсивнее, тем меньше время релаксации, а следовательно, и подвижность.

При комнатной температуре средняя скорость теплового движения свободных электронов в невырожденном полупроводнике около 105 м/с.

Причинами рассеяния носителей заряда в полупроводниках, по-разному влияющими на температурную зависимость подвижности, являются:

1. тепловые колебания атомов или ионов кристаллической решетки;

2. примеси в ионизированном или нейтральном состоянии;

3. дефекты решетки (пустые узлы, искажения, вызванные атомами внедрения, дислокации, трещины, границы кристаллов и т.д.).

3.3 Концентрация собственных носителей

В полупроводнике при любой температуре в результате процессов тепловой генерации и рекомбинации устанавливается некоторая равновесная концентрация электронов n0 и дырок p0.

У собственных полупроводников:

ni=pi, ni+pi=2ni (3.8)

Единица измерения концентрации - штук в единице объема.

Классическое распределение Больцмана для молекул газа в единице объема и статистика Максвелла - Больцмана, если Еi - полная энергия частицы, дают следующую формулу для определения концентрации этих частиц:

(3.9)

В квантовой теории вероятность заполнения энергетического уровня электронами подчиняется статистике Ферми-Дирака и определяется функцией Ферми:

(3.10)

где Э - энергия уровня, вероятность заполнения которого определяется T - температура, k=1.3810-23 (Дж/К) = 0.8610-4 (Эв/К) - постоянная Больцмана.

Эф - энергия уровня Ферми, вероятность заполнения которого равна 0.5 и относительно которого кривая вероятности симметрична.

Для полупроводников:

Рисунок 3.1 - Положение энергетических зон в полупроводнике

При Т=00К функция Ферми обладает следующими свойствами:

Pn(Э)=1 если Э<Эф

Pn(Э)=0 если Э>Эф

Величина Эф - уровень Ферми [Эв] [Дж] или энергия электрохимического потенциала

(3.11)

где n - концентрация электронов валентной зоны.

В системах частиц, описываемых антисимметричными волновыми функциями, осуществляется распределение Ферми-Дирака. Этой статистикой описывается поведение систем фермионов (электронов, протонов, нейтронов) частиц, подчиняющихся принципу Паули и имеющих полуцелый спин (± 1/2).

Находясь на уровне Эф при T=00К электрон обладает максимальной энергией.

Таким образом величина Эф определяет максимальное значение энергии, которую может иметь электрон в твердом теле при температуре абсолютного нуля, т.е. при T=00К в металле нет электронов с энергией > Эф. То есть энергия уровня Ферми соответствует верхней границе электронного распределения при T=00К, а также средней энергии «диапазона размытия» при любой другой температуре. Энергия Ферми или энергия электрохимического потенциала - работа, которую необходимо затратить для изменения числа частиц в системе на единицу при условии постоянства объема и температуры.

Симметрия кривой вероятности заполнения относительно уровня Ферми означает одинаковую вероятность заполнения уровня электроном с энергией, большей на величину Э-Эф, и вероятность освобождения уровня от электрона с энергией на столько же меньшей энергии уровня Ферми.

Потенциал ?ф, соответствующий уровню Эф

?ф=Эф/е [Дж / Кл] (3.13)

где e=1.6*10-19 (Кл) - заряд электрона.

Электроны в статистике Ферми-Дирака неразличимы. Статистика Ферми-Дирака справедлива для частиц с полуцелым спином, которые называются фермионами.

С помощью функции Ферми можно определять заполнение электронами зоны проводимости или валентной зоны полупроводника. Для валентной зоны удобнее говорить о дырках - пустых энергетических уровнях в валентной зоне.

Любой энергетический уровень может либо занят электроном, либо свободен от электрона (занят дыркой). Поэтому сумма вероятностей

Pn(Э)+Pp(Э)=1 (3.14)

Тогда вероятность заполнения энергетического уровня дыркой

(3.15)

Как видно из последнего выражения функция вероятности для дырок совершенно аналогична функции вероятности для электронов. Различие состоит в том, что для дырок энергия возрастает при движении вниз от уровня Ферми, т.е. чем «глубже» находится дырка, тем дольше ее энергия.

Уровень Ферми обычно расположен в запрещенной зоне энергетической диаграммы относительно далеко (в единицах энергии) от зоны проводимости и от валентной зоны по сравнению с энергией (энергия, сообщаемая кристаллу при нагревании, при комнатной температуре kT0.025ЭВ).

Поэтому, пренебрегая единицей в знаменателе функции Ферми вероятность распределения электронов по энергетическим уровням зоны проводимости может определяться уже не квантовым распределением Ферми-Дирака, а классической статистикой Максвелла - Больцмана:

(3.16)

Однако нужно иметь ввиду, что в микросистемах у которых N - число частиц,

(3.17)

а G_число возможных состояний для них, когда вероятность заполнения всех возможных состояний 1, т.е. при N/G1 наступает «вырожденность».

Если же, N/G<<1, то это невырожденная система.

Системы микрочастиц в металлах, поведение которых описывается статистикой Ферми-Дирака, являются вырожденными. В состоянии вырождения средняя энергия электронного газа (металлическая связь) практически не зависит от температуры.

Электронный газ в металле остается выраженным до тех пор, пока любой из электронов не сможет обмениваться энергией с кристаллической решеткой, а это, а свою очередь, возможно лишь тогда, когда средняя энергия тепловых колебаний станет близкой к энергии уровня Ферми.

В отличие от металлов электронный газ у большинства полупроводников является невыраженным, т. к. у них в зоне проводимости много свободных состояний, а для невырожденных полупроводников (их большинство) можно пользоваться статистикой Максвелла-Больцмана и только в некоторых случаях для вырожденных полупроводников необходимо использовать статистику Ферми-Дирака.

Рисунок 3.2 - Разница в двух функциях распределения электронов по энергиям

Вывод

В данной курсовой работе были рассмотрены полупроводниковые материалы кремний и германий. Описаны основные сведения о кристаллическом строении, процессах получения, физико-химических и электрофизических свойствах, применении в полупроводниковых приборах и ИС. Следует сказать, что техника получения монокристаллов германия высокой чистоты разработана в настоящее время достаточно надежно и обеспечивает выпуск монокристаллического германия в промышленном масштабе. Требования к свойствам материалов по мере развития техники непрерывно растут, причём подчас необходимо получить труднореализуемые либо даже несовместимые сочетания свойств.

Были проанализированы температурные зависимости концентрации, подвижностей носителей заряда в полупроводниках, а также охарактеризованы методы контроля полупроводниковых материалов.

Список использованной литературы

1. Пасынков В.В., Сорокин В.С. Материалы электронной техники - М.: Высш. шк., 1986.

2. Н.И. Слипченко, В.А. Антонова, О.В. Бородин, Ю.О. Гордиенко. Материалы электронной техники. Учеб. пособие - Х.: ХТУРЭ, 2001.

3. Бонч-Бруевич В.Л, Калашников С.Г. Физика полупроводников. - М.: Наука, 1977

4. Пасынков В.В., Чиркин Л.К. Полупроводниковые приборы. М.: Высшая школа, 1987.

5. Сайт интернета http://www.techno.edu.ru

6. Методичні вказівки до курсової работи студентів з дисципліни «Матеріали електронної техніки»/ Упоряд.: М.І. Сліпченко, О.М. Рибін - Харків: ХНУРЕ, 2005.

7. Богородицкий Н.П., Пасынков В.В., Тареев Б.М. Электротехнические материалы. - Л.: Энергоатомиздат, 1985.

8. Воробьев Ю.В., Добровольский В.Н., Стриха В.И. Методы исследования полупроводников. - Киев: Высш. шк., 1988.

Страницы: 1, 2