скачать рефераты

скачать рефераты

 
 
скачать рефераты скачать рефераты

Меню

Пассивные линейные измерительные преобразователи синусоидальных напряжений и токов скачать рефераты

p align="left">Первичным током ТИП является сумма фазных токов, проходящих по проводам кабеля или шинам. В нормальном режиме и при многофазных коротких замыканиях сумма фазных токов равна нулю, поэтому магнитный поток в магнитопроводе отсутствует, а ЭДС вторичной обмотки и ток в реле КА тоже равны нулю.

При замыкании на землю эквивалентный первичный ток определяется токами нулевой последовательности. Он обусловливает в магнитопроводе поток, который наводит ЭДС во вторичной обмотке ТНП, возбуждающую ток в реле. Таким образом, ток в обмотке реле появляетс* только при замыкании на землю; он пропорционален току нулевой последовательности /0.

В действительности в ТНП осуществляется суммирование не токов IA, IBt Јс, а соответствующих магнитных потоков Ф^, Ф_д и Ф_с, которые, замыкаяа по магнитопроводу, образуют результирующий поток первичной обмотю-Ф = + Ф_д + Ф_с. Взаимные индуктивности между проводами фаз защищаемой установки и вторичной обмоткой ТНП не одинаковы, что обусловливает наличие некоторого потока небаланса Фн6 в магнитопроводе и тока небалансе /н6 в обмотке реле при нормальной работе и многофазных коротких замыканиях, не связанных с землей.

Таким образом, существенное отличие ТНП от трехтрансформаторногс фильтра состоит в том, что его ток небаланса определяется только несимметрией расположения проводов фаз кабеля относительно магнитопровода и вторичной обмотки. Поэтому он значительно меньше тока небаланса трехтрансформа-торного фильтра и обычно не превышает /н6 = 8... 10 мА. Область применение ТНП определяется защитами от замыкания на землю в системах с изолированной и компенсированной нейтралью.

Для повышения чувствительности защиты трансформатор тока нулевой последовательности выполняют с подмагничиванием. Сущность подмагничивания состоит в том, что с помощью дополнительной обмотки в ТНП создается вспомогательный магнитный поток, благодаря которому трансформатор работает в оптимальном режиме, отдавая вс вторичную цепь наибольшую мощность. Первичная обмотка ТНП состоит из одного витка, поэтому магнитодвижущая сила F3, обусловленная первичным током замыкания на землю в сети с изолированной нейтралью, мала. Из характеристики намагничивания ТНП видно. что при отсутствии подмагничивания МДС F3 создает во вторичной обмотке ТНП небольшую ЭДС Ј2.

При наличии подмагничивания магнитодвижущая сила FnM перемещает рабочую точку характеристики в область наибольшей крутизны, в результате при той же F3 ЭДС во вторичной обмотке значительно возрастает до Ј2". Соответственно увеличивается ток в реле, т. е. повышается чувствительность защиты.

Источником тока подмагничивания служит первичный измерительный трансформатор напряжения. Для исключения трансформаторной связи между обмоткой подмагничивания и вторичной обмоткой магнито-провод ТНП выполняют из двух частей, имеющих самостоятельные секции обмотки подмагничивания wnM и вторичной обмотки w2. Секции обмотки wnM одна относительно другой включены встречно, а секции обмотки w2 -- согласно. Поэтому ЭДС, наводимые в секциях вторичной обмотки магнитным потоком подмагничивания, компенсируются, а при отсутствии составляющих нулевой последовательности в первичных токах по обмотке реле проходит только ток небаланса /н6.

В общем случае ток 1^ содержит две составляющие, одна из которых /н6 нс обусловлена несимметричным расположением первичных токопроводов относительно вторичной обмотки, а вторая /н6пм -- неидентичностью магнитопрово-дов ТНП. В паспортных данных ТНП задают соответствующие им ЭДС небаланса ^нб.нс и при номинальном режиме трансформатора тока /|ном и С/пм ном. Определяя ток небаланса, обе его составляющие складывают арифметически, причем составляющую /н6 нс находят не для номинального режима ТНП, а для случая внешнего короткого замыкания, когда в первичной цепи проходит ток, в к раз больший номинального:

Здесь-- соответственно сопротивление обмотки реле и эквива-

лентное сопротивление ветви намагничивания трансформатора тока, отнесенное к вторичной обмотке.

При исчезновении намагничивания второе слагаемое в равно нулю, но одновременно резко снижается сопротивлениеПоэтому в целом ток 1^ может возрасти. Полагая в можно получить

При определении вторичного тока небаланса расчетным служит большее из двух значений, полученных по и. Первичный ток небаланса Гш, приведенный к вторичной обмотке в соответствии с эквивалентной схемой ТНП, распределяется между сопротивлениями

где wt = 1 -- число витков первичной обмотки ТНП.

Трансформатор тока нулевой последовательности с подмагничива-нием используется прежде всего в защитах от замыкания на землю синхронных генераторов.

Фильтр напряжения обратной последовательности. Напряжение обратной последовательности можно выделить с помощью ФНОП. Междуфазные напряжения Иы> И™ как известно, не содержат составляющих нулевой последовательности, поэтому для упрощения конструкций фильтра целесообразно включить его не на фазные, а на линейные напряжения. Наиболее распространены фильтры, состоящие из резисторно-конденсаторных цепей, рассмотренных в 6.

Фильтр содержит две цепи -- а и с, включенные соответственно на напряжения и U^.. При этом вершине прямоугольного треугольника напряжений в цепи а соответствует точка т, а в цепи с -- точка п, являющиеся выходными зажимами фильтра. Сопротивления цепей фильтра Ха, RB и Хс, Rc подбирают таким образом, чтобы при подводе к фильтру междуфазных напряжений, не содержащих составляющих обратной последовательности, на его выходных зажимах напряжение Umбыло равно нулю. В этом случае на векторной диаграмме фильтра точки тип совпадают.

При построении векторной диаграммы прежде всего изображают векторы подведенных к цепям фильтра напряжений прямой последовательности Ulab и Uibc. Затем для каждой цепи строят треугольник напряжений с учетом принятых направлений токов /„ и /с.

Из полученных треугольников можно определить соотношения сопротивлений RB, Ха и Rc, Хс:

Так как конденсаторы имеют стандартные емкости, то резисторы выполняют с непрерывным изменением их сопротивлений, позволяющим устанавливать их расчетные соотношения. Сопротивления определяются расчетом фильтра исходя из условия отдачи максимальной мощности. Это достигается при равенстве абсолютных значений сопротивления нагрузки фильтра, например реле Zp, подключаемого к фильтру, и внутреннего сопротивления фильтра ZK^, замеренного со стороны вторичных зажимов при закороченных первичных.

Векторная диаграмма напряжений обратной последовательности отличается от векторной диаграммы напряжений прямой последовательности тем, что междуфазные напряжения ЦаЬ и Цса меняются местами, а вектор напряжения Иьс поворачивается на угол я. При этом изменяют положение и треугольники напряжений, а их вершины тип смещаются относительно друг друга. Напряжение Umn между точками тип является напряжением на выходе фильтра в режиме, когда его выходные зажимы разомкнуты. Оно пропорционально подведенному напряжению обратной последовательности. Согласно векторной диаграмме

В общем случае, когда в подведенных к фильтру напряжениях содержатся составляющие прямой и обратной последовательностей, анализ работы фильтра проводится аналогично. При этом на его разомкнутых выходных зажимах тип появляется напряжение Цт„, пропорциональное только напряжению обратной последовательности, т. е., где тх -- коэффициент пропорциональности, называемый отношением холостого хода.

В нормальном симметричном режиме и при трехфазных коротких замыканиях на выходе фильтра имеется небольшое напряжение небаланса 1/н6, которое определяется погрешностью в работе фильтра и наличием некоторой несимметрии системы входных напряжений. Погрешность в работе фильтра увеличивается при отклонении частоты, так как изменяется сопротивление конденсаторов фильтра и нарушается расчетное соотношение между R и X.

Рассмотренный фильтр можно использовать и как фильтр напряжения прямой последовательности. Для этого достаточно поменять местами входные зажимы фильтра, например о и с. Если в фильтре нарушается указанное соотношение между Я и А', то получается комбинированныйФильтр, напряжение на выходе которого пропорционально

8. Преобразователи синусоидальных токов и напряжений в постоянные токи и напряжения и их применение

Применяемые схемы выпрямления. Наибольшего распространения получила схема двухполупериодного выпрямления И9. Основными элементами ее являются вентили -- обычно кремниевые диоды VD1--VD4. Они включаются так, что при активной нагрузке R в первый полупериод открытыми оказываются, например, диоды VD1--VD3, а во второй -- диоды VD2--VD4.

При этом на выходе схемы в нагрузке Rвыпрямленные ток и напряжение не постоянны. Они содержат постоянную составляющую, которая является средним значением выпрямленных величин и переменную составляющую. Постоянные составляющие тока и напряжения

где /ти, -- максимальные, / и U-- действующие значения синусоидальных тока и напряжения.

Переменная составляющая содержит в основном гармоническую двойной частоты. Для правильного функционирования устройств релейной защиты и автоматики переменная составляющая обычно нежелательна, поэтому принимают, меры по ее уменьшению. В частности, включают конденсатор параллельно нагрузке или реактор последовательно с ней.

Схемы трехфазного выпрямителя содержат шесть диодов, включенных так, что при подаче на вход схемы синусоидальных напряжений фаз А, В, С потенциал точки / равен высшему, а потенциал точки 2 --- низшему из потенциалов фаз А, В, С. При этом открытыми оказываются диод, связывающий точку / с фазой, имеющей высший потенциал, и диод, связывающий точку 2 с фазой, имеющей низший потенциал. Если в рассматриваемый момент времени фаза А имеет высший, а фаза В -- низший потенциал, то открытыми будут диоды VD1 и VD5, а путь прохождения тока -- таким, как показано на рис. 20, а. При симметричных напряжениях фаз и активной нагрузке среднее значение выпрямленного напряжения на нагрузке {/ср = 2,34Ј/ф, где иф -- действующее значение фазного напряжения.

Если на вход схемы подаются синусоидальные токи, сумма которых в каждый момент времени равна нулю, то одновременно оказываются открытыми три диода.

Через один из них ток проходит в нагрузку, а через два других возвращается, либо через два диода проходит в нагрузку, а через один возвращается. Так, если ток проходит через VD2, то возвращается через VD4 и VD6. При симметричных токах среднее значение выпрямленного тока в активной нагрузке 1^ = 1,35/. Если в выпрямляемых токах имеются составляющие нулевой последовательности, то эти составляющие не смогут попасть в нагрузку. Для создания такого пути в схему выпрямления вводят дополнительно два диода VD4, VD8.

Максиселекторы и миниселекторы используются для выделения максимального тока или минимального напряжения, которые обычно являются током и напряжением поврежденной фазы. Эти устройства позволяют выполнить защиту от всех видов КЗ односистемной, т. е. имеющей только один измерительный орган. Так выполнена, например, максимальная токовая защита устройства ЯРЭ-2201. Для выделения максимального тока использован максиселек-тор, имеющий промежуточные трансформаторы тока TLA1--TLA3, к вторичным обмоткам которых подключены двухполупери-одные выпрямители VS1--VS3. Для выделения из подведенных токов /„, 1Ь, 1С тока, мгновенное значение которого больше, выходы выпрямителей соединены последовательно и подключены к нагрузке R„. Наибольший выпрямленный ток соответствующего выпрямителя проходит через нагрузку к двум остальным выпрямителям, открывая все их диоды. При этом два других тока замыкаются через диоды своих выпрямителей и не выходят во внешнюю цепь. Иногда подводимые к максиселектору токи предварительно преобразуются в напряжения, например, с помощью трансреакторов. При этом для максиселектора может быть использована рассмотренная выше трехфазная двухполупериодная схема выпрямления. Напряжение на выходе этой схемы пропорционально наибольшему из подводимых токов. Такой максиселектор применен, например, в дистанционной защите ДЗ-10.

Миниселектор представляет собой устройство, на вход которого подаются выпрямленные напряжения, пропорциональные, например, линейным напряжениям ЦаЬ, ЦЬс, Цсв, а на выходе всегда выделяется напряжение, пропорциональное наименьшему из подводимых напряжений.

Работу миниселектора поясняет схема, на которой R-- сопротивление нагрузки {/,, U2, С/3 -- напряжения на входах мини-селектора, Uon -- опорное напряжение. Пусть выполняется условие Ui< U2< U3. Если при этом Е/, < Е/оп, то диод VD1 открывается и под действием напряжения, равного разности, начинает проходить ток i в направлении, показанном стрелкой. Диоды VD2 и VD3 продолжают оставаться закрытыми, так как к первому из них прикладывается обратное напряжение, равное разности, а ко второму -- напряжение. Если Ux > Uon, то все диоды оказываются закрытыми и ток в нагрузке RH отсутствует. Таким образом, ток в нагрузке определяется разностью напряжения Ј4п и наименьшего из напряжений

Ц - и3.

Блоки питания предназначены для обеспечения оперативным выпрямленным током устройств релейной защиты и автоматики. Они обычно подключаются к первичным измерительным трансформаторам тока, напряжения или трансформаторам собственных нужд подстанций. Существует несколько типов блоков питания UGA, подключаемых к трансформаторам тока ТА, отличающихся главным образом отдаваемой мощностью. Все они содержат промежуточный насыщающийся трансформатор тока TLAT и двухполупериодный выпрямитель VS на выходе. Использование насыщающегося трансформатора тока необходимо для поддержания достаточно стабильного напряжения на выходе блока питания при изменении тока i в широких пределах. Однако из-за насыщения магнитопровода TLAT резко искажается форма кривой вторичного напряжения, а его амплитуда при значительных нагрузках блока существенно возрастает. В связи с этим принимаются меры по ограничению амплитуды вторичного напряжения до приемлемых значений. Одной из мер стабилизации является включение параллельно вторичной обмотке TLAT конденсатора С1, обеспечивающего вместе с ветвью намагничивания трансформатора феррорезонансную стабилизацию напряжения на выходе блока. Вторичная обмотка имеет ответвления для подрегулировки тока наступления феррорезонанса и для получения требуемого номинального напряжения. Последовательное и параллельное включение секций первичной обмотки TLAT, а также наличие в них ответвлений позволяют изменять входное сопротивление блока и уставки по току наступления феррорезонанса.

В, устройствах релейной защиты и автоматики в качестве кратковременных источников оперативного тока применяются коденсаторные батареи, заряженные в нормальном режиме работы. Заряжаются конденсаторные батареи с помощью специальных зарядных устройств. Однако для этой цели можно использовать блоки питания, если к выходу выпрямителя VS подключить диод VD и резистор R. Для медленного заряда конденсаторной батареи С2 она включается через резистор R. Диод VD исключает ее разряд при исчезновении тока i на входе TLAT. Такие блоки получили названия блоков питания и заряда. К ним относится блок БПЗ-402. Его мощность не превышает 200 Вт.

Блоки питания VGV, подключенные к трансформатору напряжения TV или трансформатору Т собственных нужд, содержат промежуточный трансформатор напряжения и выпрямитель. Первичная обмотка промежуточного трансформатора состоит из двух секций, а вторичная имеет ответвления. Соединяя секции параллельно или последовательно, можно блок питания включать на номинальные входные напряжения, например ПО и 220 В соответственно. Ответвления на вторичной обмотке позволяют иметь неизменный уровень выпрямленного напряжения при различных входных напряжениях.

Стабилизация вторичного напряжения промежуточного трансформатора предусматривается не всегда. Так, она отсутствует, например, в блоке питания и заряда БПЗ-401.

Блоки питания и заряда могут работать в двух режимах: в режиме постоянного питания устройств зашиты и автоматики выпрямленным оперативным током или в режиме заряда конденсаторных батарей, используемых в качестве кратковременных источников оперативного тока для приведения в действие коммутационных аппаратов и устройств защиты и автоматики. В режиме заряда к блокам питания и заряда можно подключить и нагрузку небольшой мощности.

На рис. 23 показаны схемы подключения блоков питания и заряда UGA типа БПЗ-402 к измерительным трансформаторам тока ТА и VGVmm БПЗ-401 -- к трансформаторам напряжения TV или к трансформаторам собственных нужд Т. Включение токовых цепей релейной защиты и автоматики на трансформаторы тока, используемые для питания блоков питания VGA, не допускается. Блоки VGA и VGV можно использовать как раздельно, так и совместно.

Промышленность выпускает также блоки питания серии БПТ-11 и БПН-11. Основная область их применения -- элементы системы электроснабжения, оборудованные выключатели с легкими приводами, где они могут обеспечить питание электромагнита отключения с номинальной мощностью 20...25 Вт, а также питание устройств защиты сигнализации однофазных замыканий на землю в сетях с изолированной или компенсированной нейтралью. Выпускаются также мощные блоки питания БПТ-1002 и БПН-1002, предназначенные для питания выпрямленным оперативным током аппаратуры релейной защиты, сигнализации и управления, выполненной на номинальное напряжение ПО или 220 В, имеющие номинальную мощность 800...1500 Вт в кратковременном режиме.

Страницы: 1, 2, 3