скачать рефераты

скачать рефераты

 
 
скачать рефераты скачать рефераты

Меню

Пакетний фільтр. Ефективний захист комп’ютерних мереж скачать рефераты

Пакетний фільтр. Ефективний захист комп’ютерних мереж

Курсова робота

Пакетний фільтр. Ефективний захист комп'ютерних мереж.

Зміст

1. Брандмауер з фільтрацією пакетів 5

1.1 Вибір політики за замовчуванням 7

1.2 Фільтрація вхідних пакетів 8

1.3 Фільтрація на основі адреси джерела 8

1.4 Фільтрація на основі адреси призначення 9

1.5 Фільтрація на основі порту джерела 9

1.6 Фільтрація на основі порту призначення 10

1.7 Фільтрація на основі інформації про стан TCP-з'єднання 10

2. Проба і сканування 12

3. Додаткові питання фільтрації пакетів 13

3.1 Маршрут до джерела 13

3.2 Фрагментація пакетів 13

3.3 Фільтрація вихідних пакетів 14

3.4 Фільтрація на основі адреси джерела 15

3.5 Фільтрація на основі адреси призначення 15

3.6 Фільтрація на основі порту джерела 16

3.7 Фільтрація на основі порту призначення 17

3.8 Фільтрація за значеннями прапорів стану 17

4. Доступ до служб локальної мережі 19

4.1 Захист локальних служб 20

5. Вибір серверів для установки в системі 22

6. Принципи роботи брандмауерів 23

6.1 Характеристики брандмауерів 24

Висновки 28

Вступ

Термін брандмауер може набувати різні значення в залежності від принципу, покладеного в основу роботи засобів захисту, мережної архітектури і схеми маршрутизації. Брандмауери звичайно підрозділяють на три типи: брандмауер з фільтрацією пакетів, прикладний шлюз і універсальний proxy-сервер.

Брандмауер з фільтрацією пакетів, як правило, діє на мережному і транспортному рівнях і реалізується в складі операційної системи. Вихідною інформацією для фільтрації є вміст заголовків IP-пакетів, на основі якого брандмауер приймає рішення, по якому маршруті варто направити пакет.

Прикладний шлюз, чи шлюз додатків реалізується за допомогою вибору мережної архітектури і конфігурації системи. Мережний трафик ніколи не проходить через комп'ютер, на якому виконується прикладний шлюз. Щоб звернутися в Internet, локальний користувач повинен зареєструватися на прикладному шлюзі. Комп'ютер, що містить прикладний шлюз, може бути захищений брандмауерами з фільтрацією пакетів як ззовні, так і з локальної мережі.

Proxy-сервер (чи брандмауер-посередник) звичайно реалізується у виді незалежного додатка, що керує доступом до різних типів мережних служб. Для клієнтів proxy-сервер виконує роль сервера, а для серверів є клієнтом-програмою. Замість того щоб безпосередньо звертатися до вилучених серверів, спеціальним способом сформовані клієнти-програми, які звертаються до proxy. Прийнявши звертання клієнта, ргоху-сервер установлює зв'язок з вилученим вузлом, але вже не від імені клієнта, а від свого, при цьому він заміняє в пакеті адреса клієнта своєю адресою. Подібний сервер може контролювати цілісність даних, здійснювати перевірку на наявність вірусів і забезпечувати виконання правил системної політики, що визначають обмін високорівневими даними.

Всі описані типи брандмауерів керують доступом до служб. Кожен підхід має свої переваги перед іншими. Комерційні продукти, що реалізують брандмауери, як правило, являють собою сполучення засобів, призначених для фільтрації пакетів, організації прикладних шлюзів і роботи як універсальний proxy-сервер. Дана курсова в основному присвячена брандмауерам з фільтрацією пакетів.

1. Брандмауер з фільтрацією пакетів

Брандмауер з фільтрацією пакетів являє собою сукупність засобів, які реалізують набір дозволених і заборонених правил. Ці правила визначають, які пакети можуть проходити через конкретний мережний інтерфейс. На основі аналізу інформації, що міститься в заголовку пакета, брандмауер приймає рішення, чи варто переслати пакет на вузол призначення, видалити пакет, не приймати ніяких додаткових дій, або повернути передавальному комп'ютеру повідомлення про помилку. Правила, що визначають долю пакетів, складають для кожної мережної карти, у них враховуються IP-адреси джерела і призначення, номера портів TCP і UDP, прапори TCP-з'єднань, типи ICMP-повідомлень. Звичайно правила для вхідних і вихідних пакетів розрізняються.

Як правило, брандмауер установлюється для того, щоб контролювати дані, якими комп'ютери обмінюються з Internet. Дані, що надходять ззовні фільтруються; у результаті чого відсіваються неприпустимі звертання до вузлів мережі. Аналогічно відбувається перевірка інформації, переданої з внутрішньої мережі в Internet.

При настроюванні комп'ютера правила для конкретного мережного інтерфейсу зручно представляти як пари введення / виведення. Тому що вхідні і вихідні пакети обробляються незалежно один від одного, процеси фільтрації вхідних і даних керуються різними наборами правил. Списки правил, що керують фільтрацією пакетів, що надходять ззовні в локальну мережу і відправляються з локальної мережі в Internet, прийнято називати ланцюжками. Термін ланцюжок використовується тому, що при перевірці пакета правила застосовуються послідовно одне за одним, поки список правил не буде вичерпаний. Таким чином, пари введення / виведення -- це вхідна (input) і вихідна (output) ланка, одна з них виявляє собою набір правил для вхідних, а інша - для вихідних даних.

Описаний механізм досить ефективний, однак він не забезпечує безпеки локальної мережі. Це усього лише одна з ланок загальної схеми захисту. Аналіз заголовків пакетів -- операція занадто низького рівня для того, щоб реально виконувати аутентифікацію і контролювати доступ. У процесі фільтрації пакетів практично неможливо розпізнати відправника повідомлення і проаналізувати зміст переданої інформації. З усього набору даних, придатних для аутентифікації, на розглянутому рівні доступна тільки IP-адреса відправника, однак цю адресу дуже легко підмінити. Незважаючи на те що засоби фільтрації пакетів дозволяють ефективно контролювати звертання до портів, використання протоколів обміну і вміст пакетів, перевірку даних необхідно продовжити на більш високому рівні.

Однак процес фільтрації пакетів не можна недооцінювати. Без нього високорівнева фільтрація і робота брандмауера - посередника будуть неефективні, а можливо, і некоректні. Засоби захисту, що працюють на визначеному рівні мережної моделі, повинні спиратися на результати роботи процедур нижче розміщених рівнів.

1.1 Вибір політики за замовчуванням

Кожен ланцюжок являє собою набір правил, заданих явно, і політику за замовчуванням. Пакет перевіряється на відповідність кожному з явно зазначених правил; правила вибираються зі списку послідовно доти, поки не буде виявлена відповідність пакета одному з них. Якщо пакет не задовольняє жодному з явно заданих правил, починаються дії, визначені політикою за замовчуванням.

При побудові брандмауерів використовуються два основних підходи.

1. Забороняється проходження всіх пакетів; пропускаються лише ті, які задовольняють визначеним правилам.

2. Дозволяється проходження всіх пакетів, за винятком пакетів, що задовольняють визначеним правилам.

На практиці рекомендується використовувати підхід, при якому пакет, що надходить, за замовчуванням відкидається. У цьому випадку необхідний рівень безпеки досягається досить просто, але приходиться передбачати можливість звертання до кожної мережної служби і використання кожного конкретного протоколу. Це означає, що фахівець, що займається настроюванням брандмауера, повинен чітко уявляти собі, які протоколи застосовуються при звертанні до конкретних сервісних засобів. При використанні підходу, що передбачає заборону за замовчуванням, приходиться вживати спеціальних заходів кожен раз, коли необхідно дозволити Internet-доступ, проте в деяких комерційних брандмауерах передбачена лише політика такого типу.

Політика дозволу за замовчуванням дозволяє домогтися роботи системи малими зусиллями, але при цьому необхідно передбачити кожен конкретний випадок, при якому потрібно заборонити доступ. Подібний підхід сполучений з визначеною небезпекою для локальної мережі. Може статися так, що необхідність внесення додаткових заборон стане зрозумілою лише тоді, коли в результаті несанкціонованого доступу мережі буде нанесений значну шкоду. Крім того, не виключено, що ви установите нову службу, не заблокувавши попередньо доступ до неї. Таким чином, якщо ви виберете політику дозволу за замовчуванням, вам доведеться виконувати великий обсяг роботи з адміністрування брандмауера, крім того, імовірність помилки істотно збільшиться.

1.2 Фільтрація вхідних пакетів

У невеликих локальних мережах при настроюванні брандмауерів основна увага звичайна приділяється вхідному ланцюжку, зв'язаної з зовнішнім мережним інтерфейсом. Як було сказано вище, при фільтрації пакетів враховуються адреса джерела, адреса призначення, порт джерела, порт призначення і прапори, що визначають стан ТСР-з'єднання. У наступних розділах докладно розглядаються дані, що можуть міститися в зазначених полях і рішення, прийняті брандмауером.

1.3 Фільтрація на основі адреси джерела

На рівні фільтрації пакетів єдиний спосіб ідентифікації відправника - перевірка IP-адреси джерела в заголовку пакета. Обмежені можливості брандмауера надають широкі можливості для фальсифікації пакетів, при якій відправник заміняє свою адресу в заголовку пакета іншим значенням. Для підміни може бути обрана неіснуюча чи реальна адреса, що належить іншому вузлу. Це дозволяє зловмиснику незаконно проникнути у вашу систему чи атакувати інші вузли, ховаючись під вашим ім'ям. При цьому спроби простежити джерело повідомлень направляються по помилковому сліді.

1.4 Фільтрація на основі адреси призначення

У більшості випадків фільтрація на основі адреси призначення виконується автоматично. Мережний інтерфейс просто ігнорує пакети, не адресовані безпосередньо йому. Виключенням є широкомовні пакети, адресовані усім вузлам мережі.

Адреса 255.255.255.255 являє собою загальну широкомовну адресу. Ви можете визначити широкомовну адресу для конкретної мережі, додавши до номера мережі необхідну кількість десяткових чисел 255. Припустимо, наприклад, що номер мережі вашого провайдера 192.168.0.0, а ваша IP-адреса 192.168.10.30. У цьому випадку широкомовна адреса буде мати вид 192.168.255.255 або 255.255.255.255.

Широкомовний пакет, спрямований за адресою 0.0.0.0, безсумнівно фальсифікований. Ціль передачі такого пакета -- ідентифікувати версію UNIX. У відповідь на такий пакет система UNIX версії BSD передає ICMP-повідомлення про помилку з кодом 3. Приведений приклад може служити додатковим аргументом при виборі між забороною (deny) і відмовленням у проходженні (reject) пакета. У даному випадку повідомлення про помилку і є та інформація про систему, що прагне одержати зломщик.

1.5 Фільтрація на основі порту джерела

Номер порту джерела, що міститься в заголовку пакета, призначений для ідентифікації програми-відправника повідомлення, що виконується на вилученому вузлі. У запитах вилучених клієнтів вашому серверу містяться різні номери портів, а у відповідях сервера клієнтам -- той самий порт.

У складі запиту вилученого клієнта вказується непривілейований порт. Так, наприклад, номер порту в запиті до Web-сервера повинний лежати в діапазоні від 1024 до 65535.

У відповіді вилученого сервера повинний бути зазначений порт, виділений для конкретної мережної служби. Якщо ви звернулися до вилученого Web-сервера, то в його відповіді буде міститися номер вихідного порту, рівний 80. Цей порт використовується HTTP-серверами.

1.6 Фільтрація на основі порту призначення

Порт призначення визначає програму на вашому комп'ютері, який призначений пакет. У запитах вилучених клієнтів, переданих на сервер, міститься той самий порт призначення, а у відповідях сервера клієнтам - різні номери портів.

У пакеті, що містить звертання клієнта до сервера, знаходиться номер порту, виділений для забезпечення роботи конкретного типу мережної служби. Так, наприклад, пакет, спрямований Web-серверу, містить номер порту 80. У відповідях вилучених серверів на запити клієнта міститься непривілейований номер порту в діапазоні від 1024 до 65535.

1.7 Фільтрація на основі інформації про стан TCP-з'єднання

У деяких правилах обробки пакетів використовуються прапори, що визначають стан TCP-з'єднання. Будь-яке з'єднання проходить через визначені стани. Стани клієнта і сервера розрізняються між собою.

У першому пакеті, відправленому вилученим клієнтом, установлений прапор SYN (прапор АСК скинутий). Передача такого пакета є першим кроком у встановленні TCP-з'єднання. В усіх наступних пакетах, переданих клієнтом, установлений прапор АСК, а прапор SYN скинутий. Як правило, брандмауери дозволяють проходження пакетів, що містять звертання клієнтів, незалежно від стану прапорів SYN і АСК.

Пакети, передані вилученими серверами, завжди є відповідями на попередні звертання клієнтів-програм. У кожнім пакеті,, що надійшов від вилученого сервера, повинний бути встановлений прапор АСК, оскільки TCP-з'єднання ніколи не встановлюється з ініціативи сервера.

2. Проба і сканування

Проба - це спроба установити з'єднання чи одержати відповідь при звертанні до конкретного порту. Сканування являє собою серію подібних спроб, початих для різних портів. Як правило, сканування виробляється з застосуванням автоматизованих засобів.

Самі по собі проби і сканування безпечні для системи. Більш того, єдиний спосіб визначити, чи підтримується на вузлі визначений тип служби, - звернутися до відповідного порту, тобто зробити пробу. Проте в більшості випадків проби і сканування є частиною цілого комплексу заходів для збору інформації, після чого звичайно випливає спроба злому системи. У 1998 році спостерігалося різке збільшення числа випадків сканування; у цей час одержали широке поширення автоматичні скануючі програми, а в процесі збору інформації брали участь цілі групи хакерів.

3. Додаткові питання фільтрації пакетів

Обробка пакетів з маршрутом до джерела і фрагментація безпосередньо не зв'язані з фільтрацією пакетів. Однак ці питання також відносяться до забезпечення безпеки і зважуються на системному рівні.

3.1 Маршрут до джерела

Протокол IP надає можливість безпосередньо вказати в складі пакета маршрут між двома комп'ютерами і позбавити проміжні маршрутизатори права приймати рішення про шлях проходження пакета. Маршрут у складі IP-пакета, подібно ІCMP-перенапрямленю, дозволяє хакеру “обманути” систему так, що вона буде приймати його комп'ютер за локальну машину, сервер провайдера чи інший вузол мережі, що користається довірою.

За замовчуванням Red Hat Linux 6.0 не обробляє пакети, що містять маршрут до джерела. Подібним чином можна сформувати і більш ранні версії системи, але для цього необхідно переформувати ядро. В даний час у процесі нормального обміну даними явна вказівка маршруту до джерела практично не використовується, і багато маршрутизаторів попросту ігнорують подібні пакети.

3.2 Фрагментація пакетів

У різних типах локальних мереж (наприклад, Ethernet, ATM, token ring) накладаються різні обмеження на довжину переданих кадрів. По шляху проходження пакета від джерела до приймача зустрічаються ділянки мереж, що підтримують кадри меншої довжини. Щоб передати дані через таку ділянку мережі, маршрутизатор змушений розбивати пакет на частини, називані фрагментами. Перший фрагмент пакета містить номера вихідного порту і порту призначення, у наступних фрагментах ці зведення відсутні.

Конфігурація комп'ютера, що виконує функції брандмауера, повинна бути обрана так, щоб пакети, розбиті на фрагменти, відновлювалися перед передачею на вузол призначення. Така конфігурація автоматично встановлюється в Red Hat 6.0. У попередніх версіях системи засобу дефрагментації повинні були бути явно включені перед компіляцією ядра.

3.3 Фільтрація вихідних пакетів

Якщо комп'ютери вашої локальної мережі і користувачі, що працюють за ними, заслуговують довіри, питання фільтрації вихідних пакетів не так важливі, як фільтрація пакетів, адресованих локальної мережі. Якщо брандмауер не пропускає небажані повідомлення, вузли локальної мережі не будуть передавати відповіді на них. Проте симетрична фільтрація забезпечує високий ступінь захисту. Якщо брандмауер фільтрує не тільки вхідні, але і вихідні пакети, вузли Internet захищені від помилок, що допускаються вашими користувачами.

Страницы: 1, 2