скачать рефераты

скачать рефераты

 
 
скачать рефераты скачать рефераты

Меню

Оценка потенциальных значений основных технических параметров контрольного ответчика скачать рефераты

p align="left">В состав блока промежуточной частоты входит усилитель промежуточной частоты (УПЧ) (главный усилитель), обеспечивающий основное усиление и заданную избирательность по соседнему каналу приема. В случае применения многократного преобразования частоты блок промежуточной частоты может содержать несколько усилителей, работающих на разных промежуточных частотах.

Блок низкой частоты состоит из детектора и усилителя низкой частоты (УНЧ). В зависимости от числа устройств последетекторной обработки сигналов низкочастотный блок приемника может иметь различное число каналов, включать в себя устройство интегрирования на низкой частоте, а также пороговое устройство. Элементы структурной схемы сигнального тракта по своему предназначению одинаковы при различных входных сигналах. Однако в случае сложных сигналов, когда осуществляется их оптимальная обработка, обычная супергетеродинная схема дополняется новыми элементами: согласованным фильтром либо коррелятором.

Кроме блоков сигнального тракта, приемное устройство может содержать вспомогательные системы: автоматическую подстройку частоты (АПЧ), автоматическую регулировку усиления (АРУ), помехозащиту и блок питания.

Приемное устройство является составной частью контрольного ответчика. Поэтому электрические характеристики, особенности схемы и конструкции приемника должны определяться в соответствии с тактико-техническими и конструктивными особенностями ответчика в целом.

С учетом анализа особенностей различных схем построения приемных устройств, а также требований, предъявляемых к контрольному ответчику, таких как чувствительность приемника и его динамический диапазон, целесообразно радиоприемное устройство контрольного ответчика строить по супергетеродинной схеме.

3. Оценка выбора значения промежуточной частоты

При выборе промежуточной частоты необходимо исходить из следующих соображений:

1. Промежуточная частота должна лежать вне диапазона принимаемых частот и возможно дальше отстоять от границ этого диапазона.

2. Должна обеспечивать заданное ослабление зеркального и соседнего каналов приема.

3. Должна обеспечивать необходимую полосу пропускания приемника.

4. Должна обеспечивать возможность конструктивной реализации затухания контуров межкаскадных цепей

?ПР ? (0,8 ? 1,2 ) П / dК (1)

где dК - собственное затухание контуров УПЧ.

В радиоприемниках непрерывных сигналов промежуточная частота должна удовлетворять условие ?ПР ?(10 ? 20) FМАКС , где FМАКС - максимальная частота модуляции принимаемого сигнала.

Для импульсных сигналов с длительностью ?И , кроме того должно выполняться условие

?ПР ?(10 ? 20) / ?И (2)

обеспечивающее хорошее воспроизведение формы сигнала.

При уточнении промежуточной частоты следует учитывать, что более низкая промежуточная частота позволяет:

- получить меньший коэффициент шума в УПЧ, что важно для приемников сантиметровых и миллиметровых волн, не имеющих УВЧ;

- повысить коэффициент устойчивого усиления и стабильность работы УПЧ;

- снизить величину изменений показателей УПЧ (коэффициента усиления, полосы пропускания) при смене ламп;

- легче реализовать усилитель с узкой полосой пропускания.

С увеличением промежуточной частоты:

- лучше выполняются соотношения

?ПР ?(5 ? 10) ?М МАКС и ?ПР ?(10 ? 20) / ?И

- повышается подавление зеркального и других побочных каналов приема;

- уменьшается влияние шумов гетеродина на чувствительность радиоприемника, что существенно в приемниках без УВЧ, работающих в диапазоне сантиметровых волн;

- облегчается получение широких полос пропускания в УПЧ;

-облегчаются условия надежной работы системы АПЧ гетеродина;

- уменьшаются габариты контуров УПЧ.

Если значения промежуточной частоты, определяемой из разных требований (например, фильтрация промежуточной частоты и полоса пропускания), оказываются существенно различными, то необходимо применять двойное преобразование частоты. Двойное преобразование применяется также при повышенных требованиях к подавлению помех по соседнему и зеркальному каналам приема. В таком усилителе тракт первой промежуточной частоты имеет относительно небольшое усиление и избирательность. Задачей главного усилителя, настроенного на более низкую промежуточную частоту, является обеспечение основного усиления и избирательности по сигналу.

Значения промежуточных частот приемников могут быть выбраны в диапазоне от 30 кГц до 100 МГц и определяются параметрами элементов обработки радиолокационных сигналов.

С учетом приведенных рекомендаций по выбору промежуточной частоты, тактико-технических характеристик СОМ-64К, а также данных приведенных в приложении 1, можно заключить, что разработчиками контрольного ответчика была выбрана несколько заниженное значение промежуточной частоты, которая, тем не менее, обеспечивает эффективное подавление зеркального канала приема и удовлетворяющее условиям (1 и 2). Как показывают расчеты, по выражению (1):

?ПР ? (0,8 ? 1,2 ) П / dК ? (0,8 ? 1,2 ) 5 / 0,008 ? 500 МГц

и по выражению (2):

?ПР ?(10 ? 20) / ?И ?(10 ? 20) / 0,6 ? 20 МГц.

Анализ принципиальной схемы приемника контрольного ответчика СОМ-64К показывает, что при выбранной промежуточной частоте ?ПР= 24,4 МГц , полосе пропускания П= 5 МГц и требуемом обеспечении нормальной работы детектора блок усилителей промежуточной частоты содержит восемь каскадов усиления, из которых первые шесть реализованы на двойках расстроенных контуров.

4. Оценка выбора полосы пропускания

Полоса пропускания приемника оказывает решающее влияние на ряд других технических показателей приемника.

При ее определении необходимо учитывать:

1. Максимальную ширину и ширину информативной части спектра принимаемого сигнала (в случаях частотной модуляции и фазовой манипуляции).

2. Допустимые искажения сигнала.

3. Нестабильность частот генератора передатчика и гетеродина приемника.

4. Вид обработки принимаемого сигнала (неоптимальная, квазиоптимальная, оптимальная).

Для приемников простых импульсных сигналов полоса пропускания П определяется по разному в зависимости от назначения приемника. В приемниках РЛС точного определения координат выбор полосы пропускания резонансного тракта производится из условия обеспечения заданного времени нарастания импульса (длительности фронта): П=(2?4)/?И , где ?И - длительность зондирующего сигнала. В приемниках РЛС обнаружения полоса пропускания резонансного тракта составляет: П=(1?1,3)/?И .

При наличии нестабильности частот генератора передатчика и гетеродина приемника и доплеровского сдвига частоты сигнала, отраженного от движущейся цели, полосу пропускания приемника, в котором не имеется системы АПЧ, следует расширить на величину

?П=F(??ГЕН, ??ГЕТ, ??РЕЗ, ??Д. .МАКС)

где ??ГЕН и ??ГЕТ - вероятные уходы частот задающего генератора передатчика и гетеродина приемника соответственно; ??РЕЗ - возможная расстройка резонансного тракта приемника; ??Д. .МАКС - возможная максимальная частота Доплера.

Если в приемнике предусмотрена система АПЧ, обладающая коэффициентом автоподстройки КАПЧ (КАПЧ =20-30), то зависимость ?П от ??ГЕН и ??ГЕТ уменьшается на соответствующую величину КАПЧ раз.

Знание полосы пропускания резонансного (линейного) тракта позволяет ориентировочно определить полосы пропускания отдельных блоков приемника на основании следующих соотношений:

ПБВЧ =(5?15) П;

ПУПЧ =(1,1?1,2) П;

ПБНЧ =(0,7?0,8) П.

Чем шире полоса пропускания П, тем меньше следует брать величину коэффициента в выражении для ПБВЧ , а в выражении для ПУПЧ - больше. При этом общая полоса пропускания приемника составляет:

ППР = ПУПЧ /[ 1+( ПУПЧ / ПБВЧ )2 +( ПУПЧ / ПБНЧ )2 ]-1/2

Приемники сложных импульсных сигналов с частотной модуляцией или фазовой манипуляцией внутри импульса рассчитываются на оптимальную обработку. При оптимальной обработке с помощью согласованного фильтра, последний, как правило, устанавливается в тракте промежуточной частоты. В таком приемнике элементы резонансного тракта ( каскады усилителей высокой и промежуточной частот), расположены перед согласованным фильтром, не должны искажать спектр принимаемого сигнала. Поэтому полоса пропускания этих элементов должна в 1,2 ? 1,5 раз превышать ширину спектра сигнала.

Аналогичные соображения необходимо принимать во внимание при выборе полосы пропускания корреляционного приемника, в котором на входы перемножителя должны поступать усиленные сигналы без искажений.

Полоса пропускания элементов, расположенных после перемножителя, выбирается с учетом сжатия спектра принимаемого сигнала в процессе корреляционной обработки.

Для приемника сигналов непрерывного излучения ширина спектра частот определяется с учетом: индекса модуляции, максимальной частоты модуляции, максимального отклонения частоты от несущей. Далее по ширине спектра сигнала определяется полоса пропускания резонансного тракта приемника. Распределение полосы пропускания резонансного тракта приемника непрерывных сигналов производится, как и в случае приемника простых сигналов. При этом следует учитывать, что в процессе преобразования сигнала возможно сжатее его по спектру. В результате этого ширина спектра сигнала, проходящего по приемному тракту, меняется, отличаясь от спектра излучаемого (зондирующего) сигнала. Сжатие по спектру может иметь место при корреляционно-фильтровой обработке непрерывного сигнала. Тогда при выборе полос пропускания отдельных элементов резонансного тракта приемника принимаются во внимание те же соображения, что и для корреляционного приемника сложных импульсных сигналов.

Необходимая полоса пропускания супергетеродинного радиоприемника в общем случае может быть определена по формуле:

П =ПС +КЧ (2? С?С + 2? Г?Г1 +2? Г?Г2 +2? П?П +2 ? ?Д )/КАПЧ , (3)

где ПС - ширина спектра принимаемого сигнала;

КЧ = (0,3 ? 0,8) - коэффициент совпадения уходов частоты;

КАПЧ - коэффициент автоподстройки частоты (КАПЧ = 1 - при отсутствии автоподстройки; КАПЧ = 10 ? 30 - при наличии частотной автоподстройке;

КАПЧ = ? - при наличии фазовой автоподстройке.)

? С , ? Г, ? П - максимально возможные относительные уходы частоты передатчика, гетеродинов и промежуточной частоты от номинальных значений { ? С = (3 ?7)*10-5; ? Г = 5*10-3 ? 10 -4 ; ? П = (1 ?5)*10-4 ; при однократном преобразовании частоты слагаемое 2? Г?Г2 приравнивается нулю};

? ?Д - доплеровское смещение частоты { ? ?Д = ?Р?С / с - при приеме сигнала от подвижного передатчика; ? ?Д = 2 ?Р?С / с - при приеме сигнала через ретранслятор, перемещающийся относительно передатчика; ?Р - скорость подвижного объекта; с - скорость света с =3*108 м/сек}.

Ширина спектра принимаемого сигнала зависит от вида модуляции, числа каналов приема и некоторых других специфических факторов, зависящих от назначения приемника. Так как в рассматриваемом контрольном ответчике используется имульсно-временное кодирование, то зондирующим сигналом является прямоугольный радиоимпульс без внутриимпульсной модуляции. Для таких импульсных сигналов ширина спектра определяется по выражениям:

ПС = (1?2) / ? И - в случае отсутствия ограничений на форму импульса;

ПС = (1?2) / tУ - в случае требований к минимальным искажениям фронта импульса.

Выполним расчет значения ширины полосы пропускания (ПРАСЧ) для контрольного ответчика по выражению (3) и сравним полученное значение с полосой пропускания приемника заданное в тактико-технических характеристиках СОМ-64К [1].

ПС = (1?2) / ? И =2/0,6 =3,33 МГц (для ? И=0,6 мКс)

Примем значение коэффициент совпадения уходов частоты КЧ = 0,8, что соответствует самому тяжелому режиму работы приемного устройства.

Первое слагаемое выражения (3) будет составлять на частоте сигнала

?С =1000МГц: 2? С?С = 5*10-5*1000*106 = 0,1 МГц.

Второе слагаемое выражения (3) будет составлять на частоте гетеродина при промежуточной частоте равной 25 МГц:

2? Г?Г1 =2*10-4* 975*106 = 0,2 МГц.

Третье слагаемое выражения (3) приравниваем нулю, так как в приемнике используется однократное преобразование частоты.

Четвертое слагаемое выражения (3) будет составлять на промежуточной частоте равной 25 МГц:

2? П?П = 2*5*10-4*25*106 = 0,025 МГц.

Пятое слагаемое выражения (3) учитывающее доплеровское смещение частоты, вычислим для подвижного объекта летящего со скоростью 1000 м/сек :

? ?Д = 2 ?Р?С / с = 2*1000*1000*106 / 3*108 = 0,07 МГц.

Отсюда, с учетом (3) окончательно получаем расчетную ширину полосы пропускания приемника для КАПЧ = 1 ( при отсутствии автоподстройки):

ПРАСЧ = 3,33 +0,8 (0,1 +0,2 +0.025 + 0,07) = 3,65 МГц.

Полученный результат свидетельствует о том, что полоса пропускания приемного устройства в контрольном ответчике выбрана чуть больше расчетной, так как ПРАСЧ < П. Расширение полосы пропускания связано с желанием принять и усилить импульсные сигналы (радиоимпульсы) с учетом минимального искажения их фронтов, т.е. спектр такого радиоимпульса должен быть шире по сравнению с радиоимпульсом к которому ограничения на его форму не накладываются.

5. Обоснование типа усилителя промежуточной частоты

Усилители промежуточной частоты, по величине относительной ширины полосы пропускания подразделяются на узкополосные (П /?П ? 0,05) и широкополосные (с большей относительной полосой).

При заданных тактико-технических характеристик на контрольный ответчик (П=5 МГц и ?П = 24,4 МГц) СОМ-64К следует, что используемая схема УПЧ относится к классу (5/24,4 = 0,2) широкополосных усилителей.

По характеру распределения избирательности в каскадах УПЧ различают избирательные усилители с распределенной и сосредоточенной избирательностью. В УПЧ с распределенной избирательностью функции усиления и избирательности обеспечиваются в каждом каскаде. По числу резонансных контуров усилители подразделяются на одноконтурные и двухконтурные. В одноконтурных усилителях все контуры могут быть настроены на промежуточную частот (настроенные УПЧ) или могут иметь соответствующую расстройку (УПЧ с парами или тройками расстроенных каскадов). В двухконтурных усилителях применяются полосовые фильтры, образованные системой связанных контуров.

По способу включения электронных усилительных приборов УПЧ подразделяют на усилители с общим эмиттером и УПЧ с каскодным включением транзисторов (чаще по схеме ОЭ-ОБ). Широко используются УПЧ на интегральных схемах.

Усилители промежуточной частоты могут выполняться либо в виде одного блока с приблизительно однотипными каскадами (или группами каскадов), либо в виде двух блоков - блока предварительного и блока главного усилителя. В последнем случае, типичным для приемников, не имеющих УВЧ, предварительный усилитель (ПУПЧ) размещается вблизи антенны. Он должен обладать малым коэффициентом шума и обеспечивать усиление сигнала, достаточное для компенсации потерь сигнала в кабеле, соединяющем оба усилительных блока, и создания необходимого превышения уровня сигнала над уровнем возможных помех.

Для широкополосного усиления сигнала на промежуточной частоте широко используют одноконтурные схемы с настроенными и расстроенными каскадами, а также схемы с двухконтурными настроенными каскадами.

Выбирая тип схемы широкополосного УПЧ, необходимо учитывать достоинства и недостатки различных схем по простоте настройки и регулировки, качеству воспроизведения формы сигнала, избирательности по соседнему каналу, критичности к разбросу параметров усилительных электронных приборов, стабильности фазового сдвига и времени запаздывания.

С точки зрения простоты схемы лучшими являются одноконтурные настроенные усилители. Эти усилители по сравнению с другими типами УПЧ при равных полосах пропускания в меньшей степени искажают форму радиоимпульса и менее чувствительны к разбросу параметров ламп и транзисторов.

В процессе эксплуатации приемных устройств с многоканальными трактами промежуточной частоты существенное значение имеет стабильность их амплитудно-частотных характеристик. В этом отношении также предпочтительнее одноконтурные настроенные усилители.

Вместе с тем по эффективности и избирательности более совершенными являются усилители на расстроенных тройках, затем следуют усилители двухконтурные и на парах, а самые низкие показатели имеют одноконтурные настроенные усилители.

Практически одноконтурные настроенные УПЧ применяются, если требуемая полоса пропускания не превышает 2 ? 3 МГц; одноконтурные расстроенные на парах - 5 ? 10 МГц и одноконтурные расстроенные на тройках - 15 ? 20 МГц. Однако при высоких требованиях к избирательности по соседнему каналу, с целью повышения прямоугольности формы амплитудно-частотной характеристики усилителя, схемы на парах и тройках расстроенных контуров могут использоваться и при меньших значениях ширины полосы пропускания.

В узкополосных усилителях промежуточной частоты применяют схемы с полосовыми фильтрами распределенной избирательности (двухконтурные или трехконтурные) и с фильтрами сосредоточенной избирательности. Последние позволяют получить высокую избирательность и очень узкую полосу пропускания. Такие свойства в усилителе обеспечиваются при введении в его состав многозвенных полосовых или электромеханических фильтров (пьезоэлектрических и магнитострикционных).

Одноконтурные усилители промежуточной частоты целесообразно применять в случаях, когда к избирательности по соседнему каналу не предъяляются высокие требования. Они обычно реализуются на биполярных транзисторах с общим эмиттером, на каскодных схемах включения транзисторов ОЭ-ОБ или на интегральных микросхемах К171, К175 сериях (К175УВ4).

Противоречия, возникающие между необходимостью обеспечения широкой полосы пропускания, с одной стороны, максимальным коэффициентом усиления и избирательностью, с другой, вынуждает искать пути их разрешения. Одним из путей разрешения этих противоречий является переход от одноконтурных настроенных усилителей к усилителям с взаимно расстроенными каскадами. Наиболее широкое применение нашли усилители с парами и тройками расстроенных каскадов. Характерной особенностью усилителей с парами расстроенных каскадов является то, что каждый из двух каскадов, составляющих пару, расстраивается относительно средней частоты ?П полосы пропускания усилителя: первый каскад настраивается на частоту ?П1 , несколько большую, чем частота ?П , второй каскад - на частоту ?П2 , несколько меньшую, чем частота ?П. Форма амплитудно-частотной характеристики пары каскадов зависит от начальной (фиксированной) расстройки каскадов ?0 . при малых расстройках характеристика имеет один максимум; по мере увеличения ?0 вершина характеристики становится все более и более плоской. Максимально плоская вершина получается при критической расстройке: ?0 = 1. При дальнейшем увеличении расстройки ?0 характеристика становится двугорбой с провалом по частоте ?П и с максимумами при ? =± (?0 - 1)1/2.

Особенностью усилителей с тройками расстроенных каскадов является то, что в каждую такую группу входит три каскада. Два из них симметрично расстроены относительно промежуточной частоты ?П , а третий настроен на промежуточную частоту ?П . Симметричность расстройки и равенство добротностей (затуханий) контуров двух расстроенных каскадов обеспечивает симметрию результирующей резонансной кривой УПЧ.

Форма амплитудно-частотной характеристики (резонансной кривой) рассматриваемого трехкаскадного усилителя может в зависимости от того, превышает или нет расстройка контуров ?0 критическую величину ?0 КР , иметь один или три максимума.

По мере уменьшения начальной расстройки ?0 максимумы и минимумы сближаются и при критической расстройке ?0 КР = 31/2 амплитудно-частотная характеристика УПЧ будет иметь максимально плоскую вершину и ее форма еще больше приближается к прямоугольной. Выполним сравнение между собой рассмотренных схем УПЧ выполненных на усилителях с одноконтурными фильтрами. Будем полагать, что все три типа усилителей (одноконтурными настроенными каскадами, с парами расстроенных каскадов и с тройками расстроенных каскадов) имеют одинаковое число каскадов m = 6 (mП = 3; mТ =2), усилительные элементы во всех усилителях одинаковы, коэффициенты усиления и резонансные частоты всех трех усилителей равны между собой. Результаты сравнения приведены в таблице 2.

Таблица 2

Сравнительная характеристика УПЧ с одноконтурными фильтрами

Тип усилительного каскада

Полоса пропускания

Коэффициент ослабления помех, принимаемых по соседнему каналу

С одноконтурными одинаково настроенными фильтрами

П

3,2

С парами взаимно расстроенных одноконтурных каскадов

2,05П

11,8

С тройками взаимно расстроенных одноконтурных каскадов

2,5П

26

Анализ данных приведенных в таблице 2, показывает, что наиболее эффективным усилителем по коэффициенту ослабления помех, принимаемых по соседнему каналу, является усилитель выполненный на тройках взаимно расстроенных одноконтурных каскадах. Однако необходимо отметить, что такое повышение коэффициент ослабления помех, связано с увеличением числа усилительных каскадов на одну треть и со сложностью настройки всего УПЧ в целом. На основании этого можно сделать вывод, что выполненная схема УПЧ на парах взаимно расстроенных одноконтурных каскадах в контрольном ответчике СОМ-64К является наиболее целесообразной и обоснованной, так как способна обеспечить требуемые тактико-технические характеристики всего устройства в целом.

6. Обоснование схемы регулировки усиления амплитудной характеристикой усилителя промежуточной частоты

Одним из основных требований, предъявляемых к современному приемному устройству, является отсутствие в нем перегрузки. Часто это требование обеспечивается введением в приемный тракт усилителей с логарифмической амплитудной характеристикой (ЛАХ). Качество работы УПЧ с ЛАХ характеризуется следующими показателями:

1) динамическим диапазоном по входному напряжению

D ВХ =U ВХ.К / U ВХ.Н или в децибелах D ВХ = 20 lg (U ВХ.К / U ВХ.Н),

где U ВХ.Н и U ВХ.К - уровни входных напряжений, при которых начинается и кончается логарифмический участок амплитудной характеристики;

2) динамическим диапазоном по выходному напряжению

D ВЫХ =U ВЫХ.К / U ВЫХ.Н или в децибелах D ВЫХ = 20 lg (U ВЫХ.К / UВЫХ.Н),

где U ВЫХ.Н и U ВЫХ.К - уровни выходных напряжений соответствующие началу и концу логарифмического участка амплитудной характеристики;

3) коэффициент сжатия усиливаемого напряжения

С = D ВХ / D ВЫХ

4) коэффициент усиления К0 при работе усилителя в линейном режиме

(U ВХ. ? U ВХ.Н)

5) полосой пропускания ПУПЧ.

Все многообразие схемных решений усилителей с ЛАХ можно свести к двум модификациям:

1) усилителям с переменным коэффициентом усиления;

2) усилителям с переменным числом каскадов.

В первую группу объединены усилители, содержащие в своей нагрузке нелинейные сопротивления, величина которых является функцией приложенного к ним напряжения, за счет этого и производится регулировка коэффициента усиления усилителя. Наиболее распространенным примером второй группы усилителей является многокаскадный усилитель с последовательным детектированием. Схема такого усилителя предполагает, что к выходу каждого или группы каскадов УПЧ подключены амплитудные детекторы. Поскольку все детекторы подключены к общей нагрузке, то усиливаемый сигнал попадает на выход усилителя, минуя перегруженные каскады. Таким образом, усилитель в целом не перегружается до тех пор, пока не войдет в насыщении первый каскад усилителя.

Поскольку каскады логарифмического УПЧ с последовательным детектированием должны быть идентичными, то они могут выполняться только по схеме усилителей с настроенными каскадами (одноконтурными или двухконтурными).

Согласно технического описания на контрольный ответчик СОМ-64К, канал УПЧ обеспечивает амплитудную логарифмическую характеристику приемника на частоте 1030МГц в динамическом диапазоне 50дБ (316,2 раза), благодаря наличию трех раздельных амплитудных детекторов на выходах 4, 6 и 8 каскадов усиления.

Отсюда следует, что разработчиками контрольного ответчика СОМ - 64К была выбрана наиболее простая и достаточно эффективная схема регулировки усиления, путем использования логарифмической амплитудной характеристики приемника, реализуемой за счет последовательного детектирования многокаскадного УПЧ.

Страницы: 1, 2