скачать рефераты

скачать рефераты

 
 
скачать рефераты скачать рефераты

Меню

Оценка показателей безотказной работы радиоэлектронного устройства скачать рефераты

p align="left">Значение л - интенсивность отказов, берем из табл.П2.1[1].

Определяем суммарную интенсивность отказов элементов с учетом коэффициентов электрической нагрузки и условий их работы в составе устройства(окончательный расчет). Пользуются формулами

где -- интенсивность отказов элементов j-й группы с учетом электрического режима и условий эксплуатации;

-- справочное значение интенсивности отказов элементов j-й группы, j = 1, ,.., k;

nj -- количество элементов в j-й группе; j = 1 ..... k;

k -- число сформированных групп однотипных элементов;

в предельном случае каждый элемент РЭУ может составить отдельную группу;

-- поправочный коэффициент, учитывающий влияние фактора xi,i = 1, .... m;

m -- количество принимаемых во внимание факторов.

Наработка на отказ:

(2)

Вероятность безотказной работы за заданное время:

(3)

Среднее время безотказной работы устройства (средняя наработка до отказа):

Гамма - процентная наработка до отказа Тг определяется, как решение уравнения:

(4)

В случае экспоненциального распределения времени до отказа:

(5)

Подсчитываем показатели восстанавливаемости РЭУ. Рассчитываем среднее время восстановления, вероятность восстановления РЭУ за заданное время фз в предположении, что время восстановления распределено по экспоненциальному закону. ( с.172 [1]).

Расчетная формула в этом случае принимает вид (с.164 [1]):

(6)

(7)

Коэффициент готовности и вероятность нормального функционирования (с.164 [1]):

(8)

(9)

Все расчетные данные обобщены и приведены в табл.3.

Таблица 3. Расчет по среднегрупповым интенсивностям отказов (окончательный расчет)

№ п/п

Наименование и тип элемента

Обознач. на схеме

б

бб3,4,5лi

niбб3,4,5лi

фi

лiф

1

Транзисторы кремневые:

Большой мощности

Средней мощности

3VT1,4VT3, 5VT1

1VT1,4VT1,4VT2

0,8

0,8

0,548

0,493

1,644

1,479

0.7

0.8

1,15

1,18

2

Светодиоды

VD1,VD7,VD10-VD15

0,8

0,767

6,136

0.6

3,6

3

Диоды:

Стабилитроны:

Ср.мощности

Маломощные

Выпрямительные:

VD3,4VD2,4VD3,5VD7,5VD8

5VD5,5VD6

VD1,VD2,VD4-VD7, 1VD1, 2VD1,2VD2

3VD1,4VD1,4VD4-4VD21

0,8

0,8

0,8

1,37

0,986

0,219

6,85

1,972

6,351

0,5

0,5

0,4

3,425

0,986

2,54

4

Резисторы:

Переменные

Постоянные:

Pном<0,5Вт

Pном=1..2Вт

Pном<10Вт

R4,R12,R16,1R2,4R14,4R16,5R6,6R1

R1-R3,R5-R11,1R1,1R3,1R4,2R1-2R3, 3R1,3R2,4R1-4R9, 4R12,4R13,4R15

R13-R17,4R11,5R5

3R3

0,41

0,5

0,5

0,5

0,281

0,034

0,126

0,055

2,248

1,02

0,882

0,055

1,2

0,5

0,5

0,5

2,69

0, 5

0,4

0,025

5

Конденсаторы:

Электролит.AL

Керамические

3С1,4C3,4C4,5C1

C1-C24,1C1,2C1-2C4,4C3,4C4

0,8

0,4

0,603

0,027

2,412

0,837

0,55

1,1

1,32

0,88

6

Трансформатор

T1

0,5

0,617

0,617

2,2

1,32

7

КИ, дроссели

L1-L5,1L1,2L1,2L2,2L4

0,5

0,206

0,8

1,3

1,04

8

Соединители

XP1,XS1-XS7

0,7

0,288

1,8432

0,8

1,47

9

Кнопки

SB1-SB4,SA1-SA6,4SA1

0,7

0,384

4,224

0,6

2,52

10

Реле

K1-K6,1K1,3K1,4K1-4K5,5K1-5K4,6K1,6K2

0,7

0,575

10,925

2,6

28,34

11

Провода монтажные

-

0,7

0,288

6,336

0,5

3,168

12

Тетрод

VL1

1,2

1,34

1,34

0,6

0,8

13

Плата

-

0,б

0,164

0,164

3,0

0,492

14

Соединение пайкой

-

0,8

0,044

14,08

0,5

7,04

?

-

-

-

-

86,1

64,38

Поправочные коэффициенты б берем из табл.П3.1-П3.3[1]. Время восстановления элементов ф берем табл.П4[1].

ф - среднее время восстановления элементов и функциональных частей РЭУ

б - поправочные коэффициенты с учетом температуры и Кн.

б3=1,37 учитывает влияние мех. воздействий

б4=1,0 учитывает влияние относительной влажности

б5=1,0 учитывает атмосферное давление

4. Обоснование метода резервирования для функционального узла РЭУ

Все методы повышения надежности РЭУ можно условно разбить на две группы методов: схемотехнические и конструкторско-технологические .

Основные методы первой группы:

1.Выбор электрических принципиальных схем, содержащих минимальное число элементов.

2.Выбор электрических принципиальных схем, выходные характеристики которых слабо зависят от изменения напряжения питания и разброса параметров элементов. Это позволяет в значительной степени повысить параметрическую надежность, т.е. свести к минимуму постепенные отказы.

3.Выбор электрических принципиальных схем, устойчивых к воздействию дестабилизирующих факторов, особенно температуры.

Среди методов второй группы необходимо отметить следующие:

1.Правильный выбор коэффициентов электрической нагрузки элементов. Замечено, что для большинства элементов оптимальные значения коэффициентов электрической нагрузки близки к числам 0,3...0,6. Их снижение повышает надежность элементов, однако ведет, как правило, к увеличению массы, габаритов, стоимости устройства. Кроме того, чрезмерное уменьшение коэффициентов электрической нагрузки может вызвать нестабильную работу ряда элементов, например, полупроводнико-вых приборов.

2.Отбраковка потенциально ненадежных элементов в условиях производства РЭУ. Используют как электротермотренировку, так и методы индиви-дуального прогнозирования надежности элементов.

3.Защита элементов РЭУ от воздействия факторов окружающей среды.

Особую группу методов составляет повышение надежности путем резервирования.

Резервирование - это введение в структуру устройства дополнительного числа элементов, цепей и(или) функциональных связей по сравнению с минимально необходимыми для функционирования устройства. В зависимости от того, как подключаются резервные элементы в случае отказа основных, различают следующие виды резервирования:

* постоянное;

* замещением;

* скользящее(может рассматриваться как частный случай резервирования замещением).

Воспользуемся резервированием замещением с нагруженным резервом ( «горячее» резервирование). Мой выбор обусловлен тем, что данное устройство - усилитель мощности. Усилитель мощности резервируется «горячим» резервированием, так как недопустимы перерывы в его работе. В случае резервирования с нагруженным резервом при отказе блок РЭС отключается от электрической схемы, и вместо него подключается один из резервных блоков.

Основной характеристикой резервирования замещением является кратность резерва, выражаемая несокращаемой дробью и определяемая соотношением (с.201 [1]):

(1)

r - количество резервных элементов, способных замещать основные элементы данного типа;

r = m - n;

n - количество основных элементов, резервируемых резервными элементами.

Основные достоинства резервирования замещением:

1). Отсутствие даже кратковременного перерыва в функционировании устройства.

2). Простота технической реализации.

3). Отсутствие необходимости иметь переключающее устройство высокой надёжности.

Основные недостатки резервирования замещением:

1). Незначительный выигрыш в надёжности по сравнению с постоянным резервированием.

2). Резерв находится в таком же электрическом режиме, как и основной элемент, и его ресурс вырабатывается одновременно с ресурсом основного элемента, точно так же, как и при постоянном резервировании.

Таким образом, необходимо определить, какое количество резервных блоков РЭС будет обеспечивать заданный уровень надёжности, т.е. кратность резерва. Для резервирования замещением справедливо следующее выражение:

P(t)=1-(1- P'(t))m (2)

где P(t) - вероятность безотказной работы устройства;

P'(t) - вероятность безотказной работы отдельного блока РЭС;

m - количество резервированных изделий.

Чтобы надёжность удовлетворяла техническому условию, требуется выполнение условия:

P(t) > 0,95

Таблица 3. Повышение надежности резервирование (расчетная таблица).

m

1

2

3

P(t)

0.72

0.92

0.97

Таким образом, при m=3 начинает выполняться вышеупомянутое условие:

0,97 > 0,95

Следовательно количество резервированных изделий =2, а кратность резерва 2/1. Двукратного резервирования замещением достаточно, чтобы обеспечить требуемый уровень надёжности.

5. Оценка влияния способа соединения элементов в узле на метода резервирования

Иногда в ходе расчёта надёжность системы не удовлетворяет техническому заданию. В этом случае необходимо принять меры, повышающие надёжность. В общем случае эти меры можно свести к следующим:

Общие;

Прогнозирование;

Граничные испытания;

Приработка изделия;

Резервирование.

К общим методам повышения надёжности относятся:

Правильный выбор схем и элементов схем, а так же режимов их работы;

Выбор соответствующих материалов конструкций, конструктивное решение РЭУ;

Удобство технического обслуживания аппаратуры и её восстановления;

Соблюдение и совершенствование технологии производства;

Контроль качества.

Прогнозирование является важным методом повышения надёжности, поскольку в результате его проведения получаются научно-обоснованные вероятностные данные о будущем состоянии промышленного объекта.

Граничные испытания - этот метод имеет перспективы на стадии проектирования аппаратуры. Сущность его заключается в экспериментальном определении области устойчивости работы системы или отдельных узлов при воздействии различных возмущающих факторов.

Резервирование является основным средством повышения надёжности систем и устройств РЭС. Резервирование - это введение в структуру устройства дополнительного числа элементов, цепей и (или) функциональных связей по сравнению с минимально необходимым для функционирования устройства. Соединение изделий при этом производится так, что отказ наступает только после отказа основного изделия и всех резервных устройств. Резервирование позволяет получать изделия, надёжность которых может быть выше надёжности входящих в неё элементов. В зависимости от того, как подключаются резервные элементы в случае отказа основных, различают следующие виды резервирования:

Постоянное;

Замещением;

Скользящее.

При постоянном резервировании резервные элементы присоединены к основным в течение всего времени работы и находятся в одинаковом с ним рабочем режиме.

При резервировании замещением основной элемент в случае его отказа отключается от электрической цепи, обычно как по входу, так и по выходу, и вместо него подключается один из резервных элементов. Для этого применяются реле, коммутаторы и т. д.

Скользящее резервирование - это резервирование замещением, при котором любой резервный элемент может замещать любой основной элемент. Это возможно лишь при их однотипности.

При постоянном резервировании система работает без остановок, а при резервировании замещением она останавливается на время, определяемое коммутирующим устройством, однако метод постоянного резервирования более дешёвый.

6.Описание работ, выполняемых с применением ЭВМ

При выполнении данного курсового проекта я использовал следующее програмнное обеспечение: Microsft Office(Word,Excel), MathCad13, T-FLEX 3D70.

Так, в T-FLEX рассматривал свою схему, в MathCad13 производил все основные расчеты, в Excel стрографик зависимости без отказа работыP(t) от времени, и наконец в Word составлял окончательный вариант проекта.

Заключение

На основании технического условия был произведен расчет надежности электронного блока РЭУ - усилитель мощности КВ диапазона. Были получены следующие результаты: вероятность безотказной работы 0.72,наработка на отказ 15532 ч, вероятность восстановления системы 0,847, среднее время восстановления 0,8ч.

Данные не удовлетворяли ТУ, поэтому пришлось прибегнуть к резервированию - одному из способов повышения надежности РЭУ. После чего результаты расчета стали соответствовать требуемым, (вероятность безотказной работы устройства стала больше, чем 95% - 0.97).

Литература

1. Боровиков С.М. Теоретические основы конструирования, технологии и надежности. - Мн. : Дизайн ПРО, 1998. 335 с.

2. А.П.Ястребов. Проектирование и производство радиоэлектронных средств. - С-П.:Учеб. Пособие, 1998. -279 с.

3. Официальный сайт фирмы “Платан” : www.platan.ru.

4. Журнал “Радио” №3 Виталий Кляровский “Современный усилитель мощности КВ диапазона” с.62, 2004г.

Приложение 1

Схема электрическая принципиальная

Приложение 2

График зависимости вероятности без отказной работы P(t) от времени

График зависимости вероятности без отказной работы P(t) от времени (красный - с резервированием, черный - без резервированием).

Время,ч

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

P(t) без резерв.

1

0,968

0,937

0,9

0,879

0,85

0,824

0,795

0,77

0,74

0,72

P(t) с резерв.

1

0,999

0,999

0,999

0,998

0,996

0,994

0,991

0,987

0,982

0,978

Приложение 3

Выбор элементной базы

Выбор элементной базы [4]

№ п/п

Наименование и тип элемента

Внешний вид (размеры)

1

Транзисторы : (размеры в мм)

КТ503Е

КТ209Л

КТ819Г

BU208A

2

Диоды:

(размеры в мм)

Д816А

Д816Д

АЛ307А

FD600

3

Резисторы:

(размеры в мм)

Pном<0,5Вт

Тип KNP-0.5

D=3.2 L=9.0 Н=28 D=0.6

Pном=1..2Вт

Тип KNP-200

D=5 L=15 Н=35 D=0.8

Pном<10Вт

Тип KNP-1000

D=8 L=54 Н=35 D=0.8

Тип SH-083

SH-655MCL

4

Конденсаторы:

(размеры в мм)

Серия SR

КМ6

STS-038RA

5

Трансформатор МТ506-1

6

Реле электромагнитные

SCH

851H

7

Кнопки,Тумблеры

B170H

B1011

8

Тетрод ГУ-40Б

К-катод (кольцевой вывод); С1-первая сетка (стержневой вывод);С2-вторая сетка (кольцевой вывод); А-анод.

Баллон металлостеклянный с кольцевыми выводами катода и второй сетки и стержневым выводом первой сетки. Катод вольфрамовый прямого накала. Работает в вертикальном положении. Охлаждение принудительное, воздушное

9

Соединители

AC-2

BNC-AC Amphenol

BNC-S1 Amphenol

Страницы: 1, 2