скачать рефераты

скачать рефераты

 
 
скачать рефераты скачать рефераты

Меню

Оценка параметрической надежности РЭС с использованием моделирования на ЭВМ постепенных отказов скачать рефераты

p align="left">Таким образом, введя Corr(x1,mx,mz,sx,sz,mzx,szx) получим случайное число, распределенное по нормальному закону с параметрами m = mzx и = szx.

3.3 Обоснование выбора числа реализаций

3.4 Список идентификаторов

Список идентификаторов вычислительного алгоритма программы для ЭВМ.

Таблица 3.1

Обозначение параметра

Смысл параметра

В алгоритме

В программе

R1

R1

Сопротивление первого резистора

R2

R2

Сопротивление второго резистора

R3

R3

Сопротивление третьего резистора

Rbx

RW

Входное сопротивление

Koy

KOU

Коэффициент усиления

SR1

SR1

Номинальное значение сопротивления 1-го резистора

SR2

SR2

Номинальное значение сопротивления 2-го резистора

SR3

SR3

Номинальное значение сопротивления 3-го резистора

SKOU

SKOU

Номинальное значение коэффициента усиления

SRW

SRW

Номинальное значение входного сопротивления

Rtemp1

Rtemp1

Значения R1,учитывая температуру

Rtemp2

Rtemp2

Значения R2,учитывая температуру

Rtemp3

Rtemp3

Значения R3,учитывая температуру

RWtemp

RWtemp

Значения RW,учитывая температуру

KOUtemp

KOUtemp

Значения KOU,учитывая температуру

Rtime1

Rtime1

Значения R1,учитывая старение

Rtime2

Rtime2

Значения R2,учитывая старение

Rtime3

Rtime3

Значения R3,учитывая старение

RWtime

RWtime

Значения RW,учитывая старение

KOUtime

KOUtime

Значения KOU,учитывая старение

Kideal

Номинальное значение выходного параметра

dKideal

Допуск на выходной параметр

Kexit

Kexit

Значение выходного параметра n-смоделированного РЭУ

R+

Rtpol

Температурный коэффициент для R (+ обл.температур)

R-

Rtotr

Температурный коэффициент для R (- обл.температур)

Rbx

RWt

Температурный коэффициент для входного сопротивления

Koy

KOUt

Температурный коэффициент для коэффициента усиления

СR

Rct

Коэффициент старения для резисторов

С Rbx

RWct

Коэффициент старения для входного сопротивления

С Koy

KOUct

Коэффициент старения для коэффициента усиления

temp

temp

Равномерно распределенное значение температуры

time

Заданное время работы

-

n

Номер текущего смоделированного РЭУ

N

num

Число реализаций РЭУ

rxz

rxz

Коэффициент парной корреляции между RW и KOU

-

a,b

Количество попаданий в ''+''-ю и ''-''-ю облсть температур

Tv,Tn

Tv,Tn

Верхнее и нижнее значение диапазона рабочих температур

-

dR1..dR3,dRW,dKOU

Производственный допуск на R1..R3 ,RW и KOU

Р

P,Р1, Р2

Вероятности отсутствия параметрического отказа

-

mo1..mo3,mx,

mz,mzx

Математические ожидания

-

s1..s3,sx,sz,szx

Среднеквадратические отклонения

М*(Kр)

mo4

Математическое ожидание выходного параметра

s4

Среднеквадратическое отклонение выходного параметра

dx1…dx5

dx1…dx5

Сгенерированные значения температурных(временных) коэффициентов

-

x

Стандартное нормально распределённое случайное число

r(i)

k

Стандартное равномерно распределённое число в диапазоне (0…1)

-

sum…sum13

Аккумуляторы суммы значений выходного параметра

4 ОПИСАНИЕ И АНАЛИЗ ПОЛУЧЕННЫХ РЕЗУЛЬТАТОВ

После запуска программы на экране дисплея появляются параметры элементов РЭУ и запрос на ввод данных: допуск на коэффициент передачи, число реализаций РЭУ, заданное время работы, и остальных необходимых для расчёта и работы программы.

Оценка параметрической надёжности РЭС с использованием моделирования на ЭВМ отказов элементов

--------------------------------------------------------------------------------------------

Исходные данные:

-принципиальная схема

-тип резисторов ОМЛТ

-тип аналоговой микросхемы DA1:140УД9

Факторы, принимаемые во внимание:

-температура (диапазон +10..+60С)

-старение (Тз=10000 часов)

--------------------------------------------------------------------------------------------

Программа будет моделировать постепенные отказы элементов

и рассчитывать вероятность, с которой гарантируется отсутствие

постепенного отказа при заданных условиях.

--------------------------------------------------------------------------------------------

После этого вводятся все необходимые данные значения и величины. После ввода выше названных данных программа начинает моделировать РЭУ. Коэффициент передачи в программе рассчитывается как с учётом только одного из факторов: производственного разброса, температуры, старения, так и с учётом всех факторов.

Анализ результатов произведём исходя из таблицы результатов:

Таблица 4.1

Результаты решения задачи на ЭВМ (вывод семи реализаций)

N

Параметр

10

200

800

1500

2500

4000

10000

С учётом производственного допуска

R1(Om)

3082

2936

3123

3057

2938

2909

3009

R2

12081

12146

12057

11515

12120

12521

11969

R3

2406

2324

2489

2494

2255

2511

2325

RW(Om)

433703

405121

485371

429629

439846

409981

457990

KOU

50192

44399

54470

48797

47615

53120

53028

K

-3,919

-4,137

-3,861

-3,767

-4,126

-4,3

-3,977

MO

-4,006

CKO

0,162

С учётом температуры

R1(Om)

2997

2998

3075

3001

3004

2978

3041

Rt())%

-0,8

-1,9

6,2

0,05

0,4

-1,8

3,4

R2

11974

12281

12090

11772

11886

11940

11921

Rt())%

-2,2

5,9

1,9

-4,8

-2,4

-1,2

-1,6

R3

2397

2435

2389

2441

2394

2403

2373

Rt())%

-0,9

3,7

-1,1

4,3

-0,7

0,3

-2,8

RW(Om)

429868

430104

430414

430822

429476

430156

429819

RWt())%

-0,3

0,06

0,2

0,5

-0,3

0,09

-0,1

KOU

49487

49151

49352

54021

48314

49922

49665

KOUt())%

-10,2

-4,2

-3,2

20

-8,4

-0,4

-1,7

K

-3,995

-4,125

-3,932

-3,923

-3,956

-4,009

-3,920

MO

-4,001

CKO

0,0526

С учётом старения

R1(Om)

3016

2988

3081

3033

2982

3041

2959

Rct()%

0,5

-0,4

2,7

1,1

-0,6

1,4

-1,3

R2

11844

11977

12107

12075

12077

12084

12047

Rct()%

-1,3

-0,1

0,9

0,6

0,8

0,7

0,4

R3

2449

2432

2400

2398

2366

2370

2385

Rct()%

2,1

1,4

0,008

-0,06

-1,4

-1,2

-0,6

RW(Om)

432146

431189

424724

426867

427351

431957

431042

RWct()%

0,4

0,2

-1,2

-0,7

-0,6

0,4

0,2

KOU

50081

55350

49185

50345

51599

53088

47593

KOUct()%

0,2

10,6

-1,6

0,7

3,1

6,2

-4,8

K

-3,926

-4,009

-3,930

-3,982

-4,050

-3,974

-4,071

MO

-4,002

CKO

0,0762

С учётом всех факторов

R1

3096

2902

3287

3091

2925

2927

3009

R2

11898

12407

12257

11367

12083

12546

11937

R3

2454

2390

2479

2535

2218

2483

2285

RW

435735

406341

479879

427314

436605

411996

458907

KOU

49759

48315

52888

53085

47482

56313

50136

K

-3,843

-4,276

-3,729

-3,677

-4,131

-4,286

-3,967

MO

-4,009

CKO

0,187

Kideal

-4,000

P

0.698

Из таблицы выписываем данные:

СКО(с учётом производственного допуска)=0,162

СКО(с учётом температуры)=0,0526

СКО(с учётом старения)=0,0762

Это означает, что температура и старение незначительно влияет на выходной параметр K(коэффициент передачи), тогда как производственный допуск (разброс параметров) элементов вносит основной вклад в отклонение выходного параметра от идеального (номинального) значения Kideal.

В конце таблицы выведена вероятность, с которой гарантируется отсутствие постепенного отказа: P=0,698.

Вероятность того,что в заданных условиях эксплуатации и течении времени t=tзад произойдёт постепенный отказ, определится как: Где N - номер реализации; R1,R2,R3,RW,KOU -рассматриваемые входные параметры; K-выходной параметр;

MO - математическое ожидание выходного параметра; CKO-среднеквадратическое отклонение выходного параметра; Kideal - номинальный коэффициент передачи; P - вероятность отсутствия параметрического отказа. Rt,RWt,KOUt - температурные коэффициенты ; Rct,RWct,KOUct - коэффициенты старения.

q=1-P=1-0,698=0,302

Это означает, что при эксплуатации операционных усилителей (ОУ) в заданных условиях в течение промежутка времени tзад=10000 ч в среднем из каждых 100 ОУ лишь у 30-31 экземпляров выходной параметр (коэффициент передачи K) выйдет за пределы Kideal 5%.

5. ПОЯСНЕНИЯ ФУНКЦИОЕАЛЬНЫХ ЧАСТЕЙ СТРУКТУРНОЙ СХЕМЫ АЛГОРИТМА

Таблица 5.1

Пояснения функциональных частей структурной схемы алгоритма

Номер функциональной части

Пояснение

2

3,13,19

4

5

6

7,8

9,10

11,12

14,15

16,17

18

20

21

Ввод исходных данных:SR1,SR2,SR3,SRW,SKOU,

dR1,dR2,dR3,dRW,dKOU,Tv,Tn,rxz,N,time,Ki,dKi,Rtotr,

Rtpol,RWt,KOUt,Rct,RWct,KOUct.

Организация цикла по переменной n.Индексом n учитываются реализации выходного параметра Kexit.

Генерация нормально либо равномерно распределённых R1,R2,R3 и нормально распределённых RW,KOU.Закон выбирается в зависимости от допуска на сопротивление. Расчёт Kexit по формуле (1.1).

Генерация равномерно распределённого значения температуры в диапазоне от Tn до Tv.

Оператор выбора попадания температуры в положительную( 20 С), либо в отрицательную(<20 С) область рабочих температур.

Генерация нормально распределённых значений температурных коэффициентов.

Пересчёт R1,R2,R3,RW,KOU под действием температуры. Расчёт Kexit по формуле (1.1) с учётом температупы.

Генерация нормально распределённых значений коэффициентов старения.

Пересчёт R1,R2,R3,RW,KOU под действием старения при t=tзад. Расчёт Kexit по формуле (1.1) с учётом старения.

Расчёт Kexit по формуле (1.1) с учётом температуры, старения, производственного допуска.

Расчёт вероятностей отсутствия постепенного отказа по формуле (2.7) для отрицательной (P1) и положительной (P2) областей температур и выбор минимальной (P).

Статистическая обработка результатов моделирования: расчёт математических ожиданий и среднеквадратических отклонений с учётом температуры, старения, производственного допуска и с учётом всех факторов.

Вывод результатов

ЗАКЛЮЧЕНИЕ И ВЫВОДЫ

В результате проделанной работы было выявлено:

1) На параметрическую надежность РЭУ в большей степени влияет производственный допуск на параметры элементов РЭУ, тогда как дестабилизирующий фактор (температура) и процессы старения (при данных температурных коэффициентах и коэффициентах старения при заданном времени tзад = 10000 час) влияют в меньшей степени, однако уменьшают вероятность, с которой гарантируется отсутствие постепенного отказа.

2) Опыт эксплуатации РЭУ показывает, что эксплуатационная надёжность практически всегда ниже того уровня, который получается по результатам расчёта. Это объясняется как несовершенством технологии производства, так и низкой достоверностью справочной информации.

ЛИТЕРАТУРА

1. Боровиков С.М. Теоретические основы конструирования, технологии и надежности, -- Минск: Дизайн - Про, 1998.

2. Богданович М.И , Грель И.Н Интегральные микросхемы. Справочник, - Минск.: Полымя,1996

3. Папиев В.П. Сопротивления (том1),Справочник--М.: Электростандарт, 1977.

4. Фомин А.В., Борисов В.Ф., Чермошенский В.В. Допуски в радиоэлектронной аппаратуре, - М.: Советское радио, 1973.

5. Теоретические основы конструирования, технологии и надежности. Методические указания к курсовой работе под ред. Боровикова С.М., - Минск: БГУИР, 1995.

6. ГОСТ 19.002-80 Схемы алгоритмов и программ. Правила выполнения.

7. ГОСТ 2.105-95 Общие требования к текстовым документам.

ПРИЛОЖЕНИЕ 1

ЛИСТИНГ ПРОГРАММЫ

PROGRAM Toktin;USES Crt;Label L1;VAR k,x,x1,R1,R2,R3,RW,KOU,Kexit,sum,sum1,sum2,sum3,sum4,sum5,sum6,sum7,sum8,sum9,sum10,sum11,sum12,sum13,mo1,mo2,mo3,mo4,s1,s2,s3,s4,mx,mz,mzx,sx,sz,szx,rxz,P1,P2,P,SR1,SR2,SR3,SRW,SKOU,dR1,dR2,dR3,dR4,dRW,dKOU,Kideal,dKideal,Rtotr,Rtpol,Rct,RWt,KOUt,RWct,KOUct,Rtemp1,Rtemp2,Rtemp3,Rtemp4,RWtemp,KOUtemp,Rtime1,Rtime2,Rtime3,Rtime4,RWtime,KOUtime,temp,dx1,dx2,dx3,dx4,dx5,Tn,Tv:Real;i,a,b:Integer;time,num,n:Integer;Function Generator(m:Real;s:Real):Real;Label L1;BEGINL1:x:=0;FOR i:=1 TO 12 DOBEGINk:=Random;x:=x+k;END;x:=x-6;if (x>3) or (x<-3) then goto L1;m:=m+s*x;Generator:=m;END;Function Generator2(m:real;s:real):Real;BEGINk:=Random;m:=(s-m)*k+m;Generator2:=m;end;Procedure Corr(x1,mx,mz,sx,sz:real; Var mzx,szx:real);BEGINmzx:=mz+rxz*(sz/sx)*(x1-mx);szx:=sz*sqrt(1-sqr(rxz));END;BEGIN textbackground(1);ClrScr;Randomize;TextColor(10);GotoXY(12,2);Writeln('ОЦЕHКА ПАРАМЕТРИЧЕСКОЙ HАДЕЖHОСТИ РЭС');GotoXY(3,3);Writeln('С ИСПОЛЬЗОВАHИЕМ МОДЕЛИРОВАHИЯ HА ЭВМ ОТКАЗОВ ЭЛЕМЕHТОВ');GotoXY(1,4);

Writeln('------------------------------------------------------------');Writeln(' Исходные данные: ');Writeln(' -принципиальная схема ');Writeln(' -тип резисторов ОМЛТ ');Writeln(' -тип аналоговой микросхемы DA1:140УД9 ');Writeln(' Факторы принимаемые во внимание: ');Writeln(' -температура (диапазон +10..+60C) ');Writeln(' -старение (Tз=10000 часов) ');riteln('------------------------------------------------------------');Writeln(' Программа будет моделировать постепенные отказы элементов ');Writeln(' и рассчитывать вероятность, с которой гарантируется ');Writeln(' отсутствие постепенного отказа при заданных условиях. ');Writeln('------------------------------------------------------------');ReadKey;ClrScr;Writeln('------------------------------------------------------------');Writeln(' Ввод необходимых данных для рассчета: ');Write(' -введите номинал R1 (рекомендуется 3000.Om +/-5%): ');Read(SR1);GotoXY(63,3);Write('+/-');GotoXY(67,3); Readln(dR1);Write(' -введите номинал R2 (рекомендуется 12000.Om+/-5%): ');Read(SR2);GotoXY(63,4);Write('+/-');GotoXY(67,4); Readln(dR2);Write(' -введите номинал R3(рекомендуется 2400.Om +/-10%): ');Read(SR3);GotoXY(63,5);Write('+/-');GotoXY(68,5);Readln(dR3);Write (' -введите вх.сопротивление RW(рекомендуется 430000.Om+/-30%): ');Read(SRW);GotoXY(70,6);Write('+/-');GotoXY(73,6);Readln(dRW);Write (' -введите коэф-т усиления О.У. KOU (рекомендуется 50000+/-30%): ');Read(SKOU);GotoXY(72,7);Write('+/-');GotoXY(76,7);Readln(dKOU);Writeln(' -введите температурные коэффициенты :');Write (' для R, T=-60..+20C (рекомендуется +/-0.12%): ');Readln(Rtotr);rite (' для R, T=+20..+100C (рекомендуется +/-0.07%): ');Readln(Rtpol);Write (' для RW, T=-60..+100C (рекомендуется +/-0.0075%): ');Readln(RWt);Write (' для KOU, T=-60..+100C (рекомендуется +/-0.25%): ');Readln(KOUt);Writeln(' -введите коэффициенты старения:');Write (' для R (рекомендуется +/-0.0004%) :');Readln(Rct);Write (' для RW (рекомендуется +/-0.0005) :');Readln(RWct);Write (' для KOU (рекомендуется +/-0.003) :');Readln(KOUct);rite(' -введите коэффициент парной корреляции между KOU и RW:');Readln(rxz);Kideal:=(-SR2/SR1)*(1/(1+(1+SR3/SR1+2*SR3/SRW)/SKOU));WriteLn('Коэффициент передачи Kideal=',Kideal:4:3);Write(' -условие отсутствия постепенного отказа в %: ');ReadLn(dKideal);Write (' -количество модулируемых экземпляров: ');Readln(num);Write (' -заданное время работы Тз: ');Readln(time);writeln ('Введите заданный диапазон рабочих температур: '); writeln;write ('Нижняя граница температурного диапазона : '); read(Tn);

write ('Верхняя граница температурного диапазона : '); read(Tv);Writeln(' -----------------------------------------------------------');Writeln(' Моделирование и рассчет займут некоторое время. ');Readkey;TextColor(13+Blink);Writeln(' ПРОИЗВОДИТСЯ МОДЕЛИРОВАHИЕ И РАССЧЕТ: ');TextColor(15);

sum:=0;sum1:=0;sum2:=0;sum3:=0;sum4:=0;sum5:=0;sum6:=0;sum7:=0;

sum8:=0;sum9:=0; sum10:=0;sum11:=0;sum12:=0;sum13:=0;FOR n:=1 TO num DOBEGINif dR1<=5 thenR1:=Generator2(SR1-(SR1*dR1/100),SR1+(SR1*dR1/100))elseR1:=Generator(SR1,(SR1*dR1/300));if dR2<=5 thenR2:=Generator2(SR2-(SR2*dR2/100),SR2+(SR2*dR2/100))elseR2:=Generator(SR1,(SR1*dR1/300));if dR3<=5 thenR3:=Generator2(SR3-(SR3*dR3/100),SR3+(SR3*dR3/100))elseR3:=Generator(SR3,(SR3*dR3/300));RW:=Generator(SRW,(SRW*dRW/300));Corr(RW,SRW,SKOU,(SRW*dRW/300),(SKOU*dKOU/300),mzx,szx);KOU:=Generator(mzx,szx);Kexit:=(-R2/R1)*(1/(1+(1+R3/R1+2*R3/RW)/KOU));sum:=sum+(Kexit);sum1:=sum1+sqr(Kexit);temp:=Generator2(Tn,Tv);if (temp>=20) thenbegina:=a+1;dx1:=Generator(0,(Rtpol/300));R1:=R1+R1*Abs(20-Tv)*dx1;Rtemp1:=SR1+SR1*Abs(20-Tv)*dx1;dx2:=Generator(0,(Rtpol/300));R2:=R2+R2*Abs(20-Tv)*dx2;Rtemp2:=SR2+SR2*Abs(20-Tv)*dx2;dx3:=Generator(0,(Rtpol/300));R3:=R3+R3*Abs(20-Tv)*dx3;Rtemp3:=SR3+SR3*Abs(20-Tv)*dx3;dx4:=Generator(0,RWt/300);RW:=RW+RW*Abs(20-Tv)*dx4;RWtemp:=SRW+SRW*Abs(20-Tv)*dx4;Corr(dx4,0,0,RWt/300,KOUt/300,mzx,szx);dx5:=Generator(mzx,szx);KOU:=KOU+KOU*Abs(20-Tv)*dx5;KOUtemp:=SKOU+SKOU*Abs(20-Tv)*dx5;Kexit:=(-Rtemp2/Rtemp1)*(1/(1+(1+Rtemp3/Rtemp1+2*Rtemp3/RWtemp)/KOUtemp));sum2:=sum2+(Kexit);sum3:=sum3+sqr(Kexit);dx1:=Generator(0,(Rct/300));R1:=R1+R1*time*dx1;Rtime1:=SR1+SR1*time*dx1;dx2:=Generator(0,(Rct/300));R2:=R2+R2*time*dx2;Rtime2:=SR2+SR2*time*dx2;dx3:=Generator(0,(Rct/300));R3:=R3+R3*time*dx3;Rtime3:=SR3+SR3*time*dx3;dx4:=Generator(0,(Rct/300));RW:=RW+RW*time*dx4;RWtime:=SRW+SRW*time*dx4;Corr(dx4,0,0,RWct/300,KOUct/300,mzx,szx);dx5:=Generator(mzx,szx);KOU:=KOU+KOU*time*dx5;KOUtime:=SKOU+SKOU*time*dx5;Kexit:=(-Rtime2/Rtime1)*(1/(1+(1+Rtime3/Rtime1+2*Rtime3/RWtime)/KOUtime));sum4:=sum4+(Kexit); sum5:=sum5+sqr(Kexit);Kexit:=(-R2/R1)*(1/(1+(1+R3/R1+2*R3/RW)/KOU));sum6:=sum6+(Kexit);sum7:=sum7+sqr(Kexit);IF Kexit<(Kideal-Kideal*dKideal/100) THENIF Kexit>(Kideal+Kideal*dKideal/100) THEN P1:=P1+1;end;if (temp<20) thenbeginb:=b+1;dx1:=Generator(0,(Rtotr/300));R1:=R1+R1*Abs(20-Tn)*dx1;Rtemp1:=SR1+SR1*Abs(20-Tn)*dx1;dx2:=Generator(0,(Rtotr/300));R2:=R2+R2*Abs(20-Tn)*dx2;Rtemp2:=SR2+SR2*Abs(20-Tn)*dx2;dx3:=Generator(0,(Rtotr/300));R3:=R3+R3*Abs(20-Tn)*dx3;Rtemp3:=SR3+SR3*Abs(20-Tn)*dx3;dx4:=Generator(0,RWt/300);RW:=RW+RW*Abs(20-Tn)*dx4;RWtemp:=SRW+SRW*Abs(20-Tn)*dx4;Corr(dx4,0,0,RWt/300,KOUt/300,mzx,szx);dx5:=Generator(mzx,szx);KOU:=KOU+KOU*Abs(20-Tn)*dx5;KOUtemp:=SKOU+SKOU*Abs(20-Tn)*dx5;Kexit:=(-temp2/Rtemp1)*(1/(1+(1+Rtemp3/Rtemp1+2*Rtemp3/RWtemp)/KOUtemp));sum8:=sum8+(Kexit); sum9:=sum9+sqr(Kexit);dx1:=Generator(0,(Rct/300));R1:=R1+R1*time*dx1;Rtime1:=SR1+SR1*time*dx1;dx2:=Generator(0,(Rct/300));R2:=R2+R2*time*dx2;Rtime2:=SR2+SR2*time*dx2;dx3:=Generator(0,(Rct/300));R3:=R3+R3*time*dx3;Rtime3:=SR3+SR3*time*dx3;dx4:=Generator(0,RWct/300);RW:=RW+RW*time*dx4;RWtime:=SRW+SRW*time*dx4;Corr(dx4,0,0,RWct/300,KOUct/300,mzx,szx);dx5:=Generator(mzx,szx);KOU:=KOU+KOU*time*dx5;KOUtime:=SKOU+SKOU*time*dx5;Kexit:=(-Rtime2/Rtime1)*(1/(1+(1+Rtime3/Rtime1+2*Rtime3/RWtime)/KOUtime));sum10:=sum10+(Kexit); sum11:=sum11+sqr(Kexit);Kexit:=(-R2/R1)*(1/(1+(1+R3/R1+2*R3/RW)/KOU));sum12:=sum12+(Kexit); sum13:=sum13+sqr(Kexit);IF Kexit<(Kideal-Kideal*dKideal/100) THENIF Kexit>(Kideal+Kideal*dKideal/100) THEN P2:=P2+1;end;END;P1:=P1/a;P2:=P2/b;IF P2>P1 thenbegin P:=P1;mo1:=sum/num;mo2:=sum2/a;mo3:=sum4/a;mo4:=sum6/a;s1:=sqrt((sum1-sqr(sum)/num)/(num-1));s2:=sqrt((sum3-sqr(sum2)/a)/(a-1));s3:=sqrt((sum5-sqr(sum4)/a)/(a-1));s4:=sqrt((sum7-sqr(sum6)/a)/(a-1));end;if P2<P1 thenbeginP:=P2;mo1:=sum/num;mo2:=sum8/b;mo3:=sum10/b;mo4:=sum12/b;s1:=sqrt((sum1-sqr(sum)/num)/(num-1));s2:=sqrt((sum9-sqr(sum8)/b)/(b-1));s3:=sqrt((sum11-sqr(sum10)/b)/(b-1));s4:=sqrt((sum13-sqr(sum12)/b)/(b-1));end;

ClrScr;WriteLn('Коэффициент передачи: ',Kideal:6:3);WriteLn('Математическое ожидание, учитывая производственный допуск:',mo1:6:3);WriteLn('Среднеквадратичное отклоненение: ',s1:6:4);WriteLn('Математическое ожидание, учитывая температурный допуск: ' ,mo2:6:3);WriteLn('Среднеквадратичное отклоненение: ',s2:6:4);WriteLn('Математическое ожидание, учитывая старение: ',mo3:6:3);WriteLn('Среднеквадратичное отклоненение: ',s3:6:4);WriteLn('Математическое ожидание, учитывая все факторы: ',mo4:6:3);WriteLn('Среднеквадратичное отклоненение: ',s4:6:4);Writeln('-------------------------------------------------------------------------');WriteLn('Вероятность отсутствия параметрического отказа: ');WriteLn('P=',P:6:4);if num<4*Sqr(s4)/Sqr(0.01) thenBeginwriteln('Не достигнута заданная точность !');writeln('Следует сделать число реализаций процесса сделать>',num,'!');end;REPEAT UNTIL KeyPressed;END.

Страницы: 1, 2