скачать рефераты

скачать рефераты

 
 
скачать рефераты скачать рефераты

Меню

Может ли компьютер мыслить скачать рефераты

ети первой группы, такие как сети обратного распространения ошибки, сети Хопфилда и др. используются для распознавания образов, анализа и синтеза речи, перевода с одного языка на другой и прогнозирования. Это вызвано такими особенностями сетей как восстановление изображения по его части, устойчивостью к зашумлению входного сигнала, прогнозирование изменения входов и параллельность вычислений. Также, немаловажной характеристикой является способность функционировать даже при потере некоторой части сети.

Сети второй группы используются как системы управления в реальном времени несложных объектов. Это управление популярными в последнее время интеллектуальными агентами, выполняющими роль виртуальных секретарей. Особенностями данной группы является появление некоторых внутренних стимулов, возможностью к самообучению и функционированию в реальном времени.

И, наконец, сети третьей группы, являющиеся дальнейшим развитием предыдущих, представляют собой уже нейроподобные системы и нацелены они на создание экзотических в настоящее время виртуальных личностей, информационных копий человека, средой обитания которых является глобальная сеть интернет. Данное направление только зарождается, но есть немалый шанс, что мы станем свидетелями ситуации рождения виртуальных людей, подробно описанной фантастами и режиссерами.

Сейчас в Интернете повсеместно можно встретить признаки зарождения подобных проектов, призывы объединиться всем научным потенциалом способного думать человечества в целях очеловечивания Интернета, преобразования его в разумную систему или среду обитания разумных систем. Раз существуют подобные предпосылки, значит не что не оставит полет человеческой мысли на пути достижения поставленной цели.

Глава II

Квантовые компьютеры и нейрокомпьютеры.

Человек уже близко подошел к созданию высокотехнологичных машин, способных мыслить, подобно ему самому. Были изложены принципы работы этих машин. Сегодня полным ходом идут исследования в этой области.

Прежде чем подойти к третьей главе я посчитал целесообразным рассказать о том: что же собой представляют квантовые и нейрокомпьютеры.

2.1. Квантовый компьютер

Ресурс компьютеров, создаваемых сегодня на основе транзисторов, диодов, конденсаторов и прочих элементов, на самом деле ограничен. Это связано с тем, что минимальная ячейка электронной микросхемы не может быть меньше размера атома.

Для решения любой задачи требуется выполнение определенного количества операций. Существующие сейчас суперкомпьютеры способны проделывать где-то десять в двенадцатой степени операций в секунду. Однако есть огромное количество самых разных задач, для решения которых требуется десять в тысячной степени операций. Даже самые мощные суперкомпьютеры будут «молотить» такой результат в течение многих миллиардов лет.

В восьмидесятых годах прошлого века известный американский физик, лауреат Нобелевской премии Ричард Фейнман обнаружил, что обычный компьютер в принципе не сможет рассчитать даже один атом, хотя его структура достаточно простая: ядро, состоящее из нескольких частиц, и электроны. А про систему из многих атомов и говорить нечего. Фейнмана осенила идея: если подобные задачи не под силу электронным машинам, то, может, для этих целей стоит создать компьютер, работающий по квантовым законам?

«Спусковым крючком» для международного ажиотажа вокруг этой идеи стала программа для гипотетического, невообразимо мощного компьютера, которую написал один американский математик. Это дало пищу для бурной фантазии физиков, которые тут же принялись создавать в своих рассуждениях фантастическую вычислительную технику. Появилась масса всевозможной литературы, посвященной тому, как будет работать новый тип машин, получивших название «квантовые компьютеры».

Заинтересовались новой темой и наши соотечественники. В начале девяностых прошлого века в Физико-технологическом институте Академии наук (ФТИАН) вплотную занялся перспективным направлением академик Камиль Валиев. До этого он много лет трудился в области транзисторной микроэлектроники в Зеленограде - в созданных им Институте молекулярной электроники и заводе «Микрон». Еще в те годы его не раз посещала мысль, что мир самых маленьких частиц можно использовать для создания принципиально новой техники.

Несколько лет ушло на то, чтобы разобраться с новой темой. И только затем появились первые результаты, поначалу теоретические - в виде идей, изложенных в статьях, книгах. Стали проводиться и экспериментальные работы. Академик начал «заманивать» на работу по новой теме разные лаборатории, и не только родного ФТИАНа, но и других институтов Москвы, Ярославля, Черноголовки...

Сейчас нашими учеными развиваются идеи разных вариантов новых вычислительных машин.

Квантовый компьютер отличается от обычного тем, что способен выполнить практически любое число операций и буквально за секунду решить задачу, с которой самая мощная из существующих на сегодня электронных машин «мучилась» бы вечность».

В случае классических компьютеров ситуация простая: транзистор либо включен, что соответствует «логической единице», либо выключен - «логический нуль». А в квантовом компьютере дело обстоит иначе. Квантовый аналог транзистора может находиться одновременно и во включенном, и в выключенном состоянии. Чтобы лучше понять это, рассмотрим электрон. Эта частица, являясь неделимой, в одно и то же мгновение может проходить сразу через два отверстия? Наглядная аналогия из нашего, большого мира: брошенный нами мяч никогда не попадет сразу в два окна ближайшего дома, а только в одно. А вот электрон в этом смысле уникален, он находится и здесь, и там, и где угодно в одно и то же время. Это свойство самых маленьких частиц и создает для квантовых компьютеров невообразимые вычислительные возможности. А что является рабочей частью квантового компьютера? Вариантов много, они исчисляются десятками. Один из них - «ионы в ловушках». В этом случае роль кубита играет отдельный ион, обычно рубидия или кальция. Частицы должны находиться в вакууме в «подвешенном» состоянии в виде одномерного кристалла. Это можно сделать с помощью переменных электрических полей. Кстати, во ФТИАНе сейчас занимаются экспериментальной подготовкой для создания подобных ловушек.

Работа непростая. Сложность заключается в том, что для квантового компьютера нужна хотя бы сотня ионов, а в цепочке можно «удержать» максимум 30 частиц. При большем количестве кристалл ломается. Для решения этой проблемы некоторыми учеными была предложена идея соединения ловушек, в каждой из которых по десять ионов. Для того чтобы такая конструкция работала как единое целое, необходимо постоянно перемещать ионы из одной ловушки в другую. Кроме того, лазерным лучом нужно «гонять» ионы с одного энергетического уровня на другой. Это, собственно, и есть процесс квантовых вычислений. Много и других проблем, которые сейчас решают ученые всего мира. Можно использовать также ионы, «висящие» над жидким гелием. Были даже попытки создать квантовый компьютер на специально синтезированной молекуле.

К сожалению сегодня не одно правительство не проявило пока большого интереса к квантовым компьютерам. Все экспериментальные работы ведутся в научных лабораториях маленькими группами ученых. Деньги для этой цели используются из университетских бюджетов, грантов. Но такого финансирования, как, скажем, при реализации атомного проекта или освоении космоса, пока нет. Хотя, стоит сказать, в период своего правления американский президент Билл Клинтон выделил миллиард долларов на развитие нанотехнологий, в том числе и квантовых компьютеров.

Квантовые компьютеры создают буквально на штучных ионах или даже одной молекуле - сотня ионов -вот и весь компьютер. Правда, частицы помещены в специальную оболочку с маленькими электродиками размером меньше сантиметра и сечением в доли микрона. В плане энергопоглощения устройство будет очень экономичное».

Можно ли говорить о замене в будущем электронных компьютеров на квантовые? Большинство учёных считают, что будут и те, и другие. Возможно, в обычном компьютере появится специальный квантовый процессор. Если нужно решить сверхзадачу, то будет использоваться этот процессор, а для остальных случаев достаточно обычного. То есть квантовые компьютеры станут «сверхмощным дополнением» к вычислительным машинам. И благодаря этому «дополнению» наука будет иметь мощнейшее орудие для своего дальнейшего развития, человечество получит колоссальные возможности. Станут реальными вещи, которые раньше казались фантастикой.

2.2 Нейрокомпьютер

Наряду
с развитием персональных ЭВМ, сетей ЭВМ и высокопроизводительных суперЭВМ традиционной архитектуры в последние годы существенно повысился интерес к разработке и созданию компьютеров нетрадиционного типа и, прежде всего, нейрокомпьютеров. Связано это с тем, что, несмотря на высокую производительность современных суперЭВМ, приближающуюся к предельно допустимой, все еще остается много практически важных проблем, для решения которых нужны более мощные и более гибкие вычислительные средства. Они необходимы для глобального моделирования процессов в экосистемах, при решении задач нейрофизиологии, искусственного интеллекта, метеорологии, сейсмологии и т. п. Необходимы они и при создании систем управления адаптивных интеллектуальных роботов.

Нейрокомпьютер - это ЭВМ нового поколения, в которой аналогом программирования является перестройка структуры в ходе обучения. Эффективность его работы достигается специфической архитектурой, где элементы работают параллельно. Создание нейрокомпьютера базируется на основе изучения организации нейронных структур мозга.

Нейроинтеллект - это модель реальной сети нейронов, представляющая собой иерархически организованное параллельное соединение простых адаптивных элементов, взаимодействующих с объектами внешнего мира аналогично тому, как это имеет место в биологических объектах. Основные особенности нейрокомпьютеров заключаются в их способности к самоорганизации и обучению на примерах (самопрограммирование и самоорганизация). Наиболее перспективной областью применения является робототехника - создание роботов с элементами искусственного интеллекта. Для создания нейрокомпьютера необходимо решить вопрос об отдельных элементах, топологии связей между элементами и правилах изменения весов связей между элементами.

В качестве отдельных элементов нейрокомпьютера были представлены: предетекторы, детекторы новизны и тождества, модуляторы, мнемонические элементы, семантические элементы и командные нейроподобные элементы.

Основные принципы топологии связей между элементами определяются принципом кодирования, основаннoм на том, что отдельным значениям параметра кодируемого сигнала ставятся в соответствие определенные меченые линии. Правило изменения весов связей определяется принципом Хебба, гласящим, что синоптические контакты, задействованным непосредственно перед разрывом нейрона, повышают свою эффективность. Синапсы, задействованные, но не сопровождаемые разрядом нейрона ее снижают.

Бортовые ЭВМ таких роботов должны воспринимать большие объемы информации, поступающей от многих параллельно функционирующих датчиков, эффективно обрабатывать эту информацию и формировать управляющие воздействия на исполнительные системы в реальном масштабе времени. Более того, управляющие компьютеры интеллектуальных роботов должны оперативно решать задачи распознавания образов, самообучения, самооптимизации, самопрограммирования, т. е. те задачи, которые весьма сложны для традиционных ЭВМ и суперЭВМ. Поэтому остается актуальной необходимость в поиске новых подходов к построению высокопроизводительных ЭВМ нетрадиционной архитектуры. Среди таких подходов центральное место занимает нейрокомпьютерный подход.

Его суть состоит в разработке принципов построения новых мозгоподобных архитектур сверхпроизводительных вычислительных систем - нейрокомпьютеров. Подобно мозгу, такие системы должны обладать глобальным параллелизмом, самообучением, самооптимизацией, самопрограммированием и другими свойствами биологических систем. Ожидается, что нейрокомпьютеры в принципе смогут решить многие из тех проблем, которые сдерживают дальнейшее развитие научнотехнического прогресса.

По современным представлениям нейрокомпьютер (НК) - это система, предназначенная для организации нейровычислений путем воспроизведения информационных процессов, протекающих в нейронных сетях мозга. Структурной единицей НК служит специфический процессор - нейропроцессор (НП), имитирующий информационное функционирование отдельных нервных клеток - нейронов. Нейропроцессоры связываются друг с другом в нейроподобные структуры, имитирующие нейронные сети мозга. По этой причине, чем точнее НП воспроизводит информационную деятельность нервных клеток, и чем ближе конфигурации искусственных нейронных сетей к конфигурациям сетей естественных, тем больше шансов воспроизвести в НК самообучение, самопрограммирование и другие свойства живых систем.

С точки зрения вычислительной техники, каждый нейропроцессор представляет собой специализированное процессорное устройство, реализуемое программным, аппаратным или программно-аппаратным способом. В то же время это устройство имеет ряд особенностей. Во-первых, НП воспроизводит не произвольно выбранный набор операций, а только те операции, которые биологически обусловлены и необходимы для описания процессов переработки информации в нервных клетках. Во-вторых, при аппаратной реализации нейропроцессоров они, подобно нейронам мозга, связываются друг с другом индивидуальными линиями передач последовательных кодов. При большом числе процессорных элементов такая связь более эффективна, чем связь нейропроцессоров по общей шине или посредством индивидуальных параллельных шин.

Эти и другие особенности НП позволяют выделить их в самостоятельный класс процессорных устройств вычислительной техники.

Глава III Основы теории нейроподобных сетей.

3.1. Некоторые сведения о мозге

Что позволяет человеку анализировать поступающую информацию? В терминологии нейрогенетики введено ключевое понятие - нейросеть. Именно совокупность нейросетей образует отделы нервной системы человека, которые в свою очередь определяют всю деятельность, придают существу разум, интеллект.

Мозг является, пожалуй, самой сложной из известных нам систем переработки информации. Достаточно сказать, что в нем содержится около 100 миллиардов нейронов, каждый из которых имеет в среднем 10 000 связей. При этом мозг чрезвычайно надежен: ежедневно погибает большое количество нейронов, а мозг продолжает функционировать. Обработка огромных объемов информации осуществляется мозгом очень быстро, за доли секунды, несмотря на то, что нейрон является медленнодействующим элементом со временем реакции не менее нескольких миллисекунд.

Пока не слишком понятно, как мозгу удается получить столь впечатляющее сочетание надежности и быстродействия. Довольно хорошо изучена структура и функции отдельных нейронов, имеются данные об организации внутренних и внешних связей между нейронами некоторых структурных образований мозга, совсем мало известно об участии различных структур в процессах переработки информации.

Ниже приводятся некоторые сведения об устройстве и работе нервной системы, которые используются при построении моделей нейронных сетей.

3.2. Нейрон как элементарное звено.

Нервные клетки, или нейроны, представляют собой особый вид клеток в живых организмах, обладающих электрической активностью, основное назначение которых заключается в оперативном управлении организмом. Схематическое изображение нейрона приведено на рисунке 1.

Рисунок 1. Схема строения нейрона

Нейрон имеет тело (сому) - 1, дерево входов (дендриты) - 4 и выходов (аксон и его окончания) - 2. Сома, как правило, имеет поперечный размер в несколько десятков микрон. Длина дендритов может достигать 1 мм, дендриты сильно ветвятся, пронизывая сравнительно большое пространство в окрестности нейрона. Длина аксона может достигать сотен миллиметров. Начальный сегмент аксона - 3, прилегающий к телу клетки, утолщен. Иногда этот сегмент называют аксонным холмиком. По мере удаления от клетки он постепенно сужается и на расстоянии нескольких десятков микрон на нем появляется миэлиновая оболочка, имеющая высокое электрическое сопротивление. На соме и на дендритах располагаются окончания (коллатерали) аксонов, идущих от других нервных клеток. Каждое такое окончание имеет вид утолщения, называемого синаптической бляшкой, или синапсом. Поперечные размеры синапса, как правило, не превышают нескольких микрон, чаще всего эти размеры составляют около 1 мкм.

Входные сигналы дендритного дерева (постсинаптические потенциалы СИНАПТИЧЕСКИЕ ПОТЕНЦИАЛЫ, биоэлектрические потенциалы, возникающие в местах специализированных межклеточных контактов -- синапсах -- во время передачи возбуждения от одной клетки (пресинаптической) к другой (постсинаптической).

Страницы: 1, 2, 3, 4, 5, 6