скачать рефераты

скачать рефераты

 
 
скачать рефераты скачать рефераты

Меню

Модуль ввода-вывода информации системы цифровой рентгенографии скачать рефераты

p align="left">Первый отечественный трехфазный аппарат РУМ-16 был разработан во ВНИИ радиационной техники в 1968 году [3].

Современная технология рентгенографии - это довольно сложный и ответственный процесс в визуализационной диагностике.

В зависимости о назначения, мощности, питающей схемы и других показателей, все питающие устройства подразделяются на следующие классы.

· Аппараты высшего класса - трехфазные аппараты с наибольшим напряжение 150 кВ и наибольшей мощностью 100 кВт (100 кВ, 1000 мА). Они обеспечивают проявление всех рентгенологических исследований на самом высоком уровне и предназначены для специализированных лечебно-профилактических учреждений (ЛПУ). К таким рентгеновским аппаратам относятся Prestige (GE, США), Multistar T.O.P., Serigraph (Siemens), Multi Diagnost 97 (Philips), Emerix-80HF Plus (Medicor) и др.

· Аппараты первого класса - трехфазные аппараты с наибольшим напряжение 125 кВ и с наибольшей мощностью 50 кВт (90кВ, 600мА и 125 кВ, 400 мА). Они тоже обеспечивают проведение любых видов рентгенологических исследований и предназначены, прежде всего, для стационаров общего назначения. Такие аппараты поставляют почти все известные фирмы, а именно: Diagnost-97 (Philips), Sirescop SX (Siemens), Emerix-65 HF Plus, Emerix-50 HF Plus (Medicor) и др.

· Аппараты второго класса - однофазные аппараты мощностью 27-30 кВт (125-150 кВ при токе 250-300 мА и 90-100 кВ при токе 400-500 мА). Эти аппараты обеспечивают проведение основных видов рентгенологических исследований. Ими комплектуются как стационары, так и поликлиники. К таким аппаратам относятся: Silhouette 20 S, Silhouette 20 (GE, США), Sirescop CX (Siemens), Eurascop 3 (Swissray), Emerix-30 HF Plus, Emerix 2P/500 (Medicor) и др.

· Аппараты третьего класса - однофазные с напряжением 125 кВ при токе 150-200 мА и 90 кВ при токе 250-300 мА. Они предназначены для рентгенографии и должны быть во всех ЛПУ. Их поставляют фирмы: GE (Solarix FV, Compax - 40, 40 E), фирма Siemens (Polimobil-10, Multix), фирма Philips (MRS), фирма Swissray (Atlas), фирма Medicor (Emerix 2P/300, Emerix 30 HFC) и др.[1].

3.2 Датчики рентгеновского излучения

Датчик предназначен для преобразования рентгеновского излучения в электрический аналог. Ниже представлена характеристика стандартного датчика для рентгенографических исследований.

Таблица 3.1 - Характеристики цифрового рентгеновского датчика

Полный размер

25425.8 мм (456684 пикселей)

Размер пикселя

4444 микрона

Чувствительная область

2030 мм

Пространственное разрешение

лучше чем 10 линий на мм

Совместимость с любыми дентальными рентгеновскими аппаратами

диапазон высокого напряжения от 50 до 70 кВ

Время экспозиции

более 80 мс

3.3 Приемники изображения ЦР

В цифровой рентгенологии могут найти применение два класса приемников изображения:

· приемники с непосредственным формированием изображения;

· приемники с частичной регистрацией изображения, в которых полное изображение формируется путем сканирования либо рентгеновским пучком, либо приемным устройством (сканирующая проекционная рентгенография).

В цифровой рентгенографии применяют усилитель изображения, ионографическую камеру и устройство с вынужденной люминесценцией. Эти приемники могут непосредственно формировать цифровые изображения без промежуточной регистрации и хранения. Усилители изображения не обладают наилучшим пространственным разрешением или контрастом, однако имеют высокое быстродействие. Аналого-цифровое преобразование флюорограммы с числом точек в изображении 512х512 может занимать время менее 0,03 с.

Матрицы изображения из 512х512 элементов может быть вполне достаточно для целей цифровой флюороскопии, тогда как система рентгеноскопии грудной клетки может потребовать матрицы с числом элементов 1024х1024 при размерах элемента изображения 0,4 мм. Но даже при числе точек 2048х2048 в изображении время преобразования изображения в цифровую форму составляет всего несколько секунд. Время считывания изображения с пластины с вынужденной люминесценции или ионографической камеры значительно больше, хотя последнее выгодно отличается лучшим разрешением и динамическим диапазоном.

Число градаций в изображении зависит от медицинского назначения. Аналого-цифрового преобразования на 8 бит, обеспечивающего точность 0,4%, вполне достаточно для регистрации зашумленных изображений или больших массивов (меньшей ступени градации яркости соответствует больший уровень шума), однако для ряда приложений может понадобиться и 10-битовый АЦП (точность 0,1%).

Если требуется быстрый доступ к информации, полученной за длительный период времени, целесообразно применять оптические диски. Емкость памяти 12-дюймового оптического диска равна примерно 2 гигабайта, что соответствует 1900 изображениям, состоящим из 1024х1024 элементов изображения и "глубиной" оцифровки в 8 бит (256 ступеней шкалы яркости) каждое (без сжатия данных). Для считывания с оптического диска может быть использовано автоматическое устройство съема, позволяющее обеспечить быстрый доступ к любому изображению. Возможность работы со всеми изображениями в цифровой форме весьма привлекательна, а системы, выполняющие это, называются системами хранения и передачи изображения (СПХИ) [1],[4].

Записанное на фотопленке изображение можно преобразовать в цифровую форму с помощью сканирующего микроденситометра, но любая информация, зафиксированная на фотопленке со слишком малой или, наоборот, слишком высокой оптической плотностью, будет искажена из-за влияния характеристик пленки. В цифровую форму можно преобразовать и ксеро- рентгенограмму также с помощью сканирующего денситометра, работающего в отраженном свете, или путем непосредственного считывания зарядового изображения с селеновой пластины.

3.4 Преобразователи формы информации для устройств аналогового ввода-вывода

Устройства ввода аналоговой информации являются гибридными аналого-цифровыми устройствами. Мультиплексоры аналоговых сигналов, измерительные усилители, схемы выборки и хранения представляют аналоговую часть интерфейса ввода аналоговой информации. Цифровую часть представляют аналого-цифровые и цифроаналоговые преобразователи (АЦП и ЦАП). Проектирование, производство и использование АЦП и ЦАП оказывают существенное влияние на характеристики ввода аналоговой информации.

АЦП преобразуют входные аналоговые сигналы в цифровую форму, ЦАП - цифровые сигналы - в аналоговые.

В устройствах сопряжения аналоговых объектов с цифровыми системами сбора и обработки данных ЦАП могут иметь двойное применение: во-первых, входят в состав АЦП, основанных на компенсационных принципах; во-вторых, выступают как элементы интерфейсов вывода, когда цифровая информация преобразуется в аналоговую форму для управления объектом исследований.

Существует некоторый набор системных требований, которые являются общими для АЦП и ЦАП. К ним относятся функциональная ориентация и системная совместимость.

Функциональная ориентация АЦП и ЦАП становится все более необходимой в связи со все большей направленностью интерфейсов ввода-вывода аналоговой информации на определенные типы систем и процессов.

В соответствии с этим АЦП в устройствах ввода аналоговой информации придаются вполне определенные дополнительные функции, которые обеспечивают более эффектное использование центрального процессора за счет разгрузки его от рутинных операций.

Системная совместимость АЦП в интерфейсе ввода аналоговой информации заключается в метрологической согласованности АЦП с предшествующими ему аналоговыми элементами.

Из наиболее важных системных параметров, определяющих технический уровень АЦП, обычно отмечают следующее[8]:

· входные - вид и диапазон изменения входного сигнала, входное сопротивление;

· выходные - вид выходного кода и уровни выходных сигналов;

· статические - разрешающая способность, инструментальная погрешность, температурный коэффициент;

· динамические - частота отсчетов, апертурное время;

· производительность - пропускная способность, бит/с;

· конструктивные - техническое исполнение;

· экономические - стоимость.

Системные параметры ЦАП:

· входные - вид входных кодов и уровни опорных напряжений;

· выходные - полярность и диапазон выходного напряжения или тока, нагрузочная способность;

· статические характеристики - погрешность квантования, инструментальная погрешность, температурный коэффициент;

· динамическая погрешность - время установления или скорость нарастания входного сигнала;

· производительность - пропускная способность, бит/с;

· конструктивные - техническое исполнение;

· экономические характеристики - стоимость, эксплуатационные расходы.

Если проанализировать перечисленные характеристики АЦП и ЦАП, то можно заметить их большое сходство. По характеру преобразований АЦП и ЦАП представляют собой дуальные преобразователи. Кроме того, большинство точностных параметров АЦП определяется относительно входного, преобразуемого напряжения, т.е. приводится к входу.

Дуальный характер АЦП и ЦАП приводит к тому, что их основные статические параметры имеют одну и ту же физическую природу и поэтому их рассмотрение может быть совмещено. Отклонения от идеальной передаточной характеристики преобразователя вызываются смещением характеристики (рисунок 3.2, а), изменением ее крутизны (рисунок 3.2, б), а также нелинейностью (рисунок 3.2, в, 3.2, г). Погрешности, вызванные нелинейностями, относятся к наиболее трудноустранимым, поскольку они не могут быть ликвидированы регулировкой. Существуют два основных метода уменьшения этих погрешностей, которые оба достаточно дороги:

· использование высококачественных преобразователей;

· алгоритмические методы коррекции с применением микропроцессоров или микрокомпьютеров.

а) б)

в) г)

Рисунок 3.2 - Характеристики АЦП

а - Влияние смещения характеристики преобразования АЦП;

б - Влияние изменения коэффициента преобразования на характеристики преобразования АЦП;

в - Влияние интегральной нелинейности на характеристики преобразователя АЦП;

г - Влияние дифференциальной нелинейности на характеристики преобразования

Интегральную нелинейность большинство производителей используют как характеристику своей продукции. Вместе с тем часто используется и дифференциальная нелинейность, которая характеризует дивиацию шага квантования по уровню (см. рисунок 3.2, г). Во многих случаях преобразователи характеризуются обоими видами нелинейности.

Для интегрирующих АЦП преобладающей является интегральная нелинейность, обусловленная главным образом нелинейностью интегратора. Дифференциальная нелинейность возникает вследствие нестабильности частоты счетных импульсов.

Важной характеристикой преобразователей является разрешающая способность, которая определяется числом разрядов выходного кода АЦП или входного кода ЦАП.

3.5 Устройства ввода аналоговой информации с децентрализованным управлением

Устройства ввода аналоговых данных непрерывно совершенствуются в направлении не только более высокой разрешающей способности и повышенного быстродействия, но и приобретения способности управления непосредственно процессом преобразования аналоговых данных и передачей результатов преобразования центральному процессору. В этом случае кроме традиционных блоков устройства аналогового ввода содержат дополнительные, обеспечивающие выполнение соответствующих операций.

Обычно внутренним блокам управления придают следующие функции:

· управление режимом опроса аналоговых каналов;

· обеспечение для устройства ввода аналоговых данных прямого доступа в память центрального процессора без участия последнего.

Первые две функции могут реализовываться запоминающим устройством (ЗУ), включенным в устройство аналогового ввода.

Внутренняя память устройства ввода аналоговых данных содержит значения коэффициентов усиления Кус измерительного усилителя, а также программы трех режимов работы в следующих случаях:

· когда выполняется однократное считывание результата измерения выбранного канала, который запоминается в памяти процессора;

· если выбирается один канал ввода аналоговой информации, подключаемый на заданное время через преобразующие устройства к центральному процессору;

· если осуществляется непрерывный опрос каналов с запоминанием результата в памяти.

Использование прямого доступа в память позволяет эффективно передавать блоки данных между внешними устройствами и центральным процессором.

Практической реализацией можно считать устройство аналогового ввода DT 2782 (DT 2784) [9]. Устройство состоит из двух подсистем:

· аналого-цифрового преобразования;

· контроллера прямого доступа в память, работающих в конвейерном режиме.

Пока выполняется очередное аналого-цифровое преобразование, по каналу прямого доступа производится передаче предыдущего результата.

Рисунок 3.3 - Устройство ввода DT 2782 с прямым доступом в память

Управление процессом прямого доступа выполняется с помощью трех регистров. В 16-разрядном регистре CSR (рисунок 3.3), в соответствующие разряды которого записываются признаки ошибок в аналого-цифровом преобразовании, запросы на прерывание, если устройство работает в режиме ввода по прерыванию, фиксируется переход из режима прямого доступа в память, часть разрядов используются для адресации каналов аналогового мультиплексора, расширение регистра текущего адреса ADR для управления адресуемого в режиме прямого доступа пространства памяти, прекращения прямого доступа при ошибках в логических схемах управления и т.д. [10].

3.6 Обоснование необходимости разработки

Опыт использования прямой цифровой рентгенографии в клинической практике с 1993 года показал преимущества данного метода, поскольку позволяет:

· снизить дозу облучения; если в обычной рентгенологии доза облучения зависит от чувствительности приемника изображения и динамического диапазона пленки, то в цифровой рентгенологии оба этих показателя могут оказаться несущественными.

· цифровое отображение информации; разложение изображения по уровням яркости на экране становится в полной мере доступным для пользователя. Весь диапазон оптических яркостей может быть использован для отображения лишь одного участка изображения, что приводит к повышению контраста в интересующей области. В распоряжении оператора имеются алгоритмы для аналоговой обработки изображения с целью оптимального использования возможностей систем отображения.

Это свойство цифровой рентгенографии также дает возможность снизить лучевую нагрузку на пациента путем уменьшения количества рентгенограмм для получения диагностической информации.

Цифровое отображение при его компьютерной обработке позволяет извлечь количественную и качественную информацию и таким образом перейти от интуитивно-эмпирического способа изображения к объективно измеренному.

· возможность цифровой обработки изображений; рентгенолог должен выявить аномальные образования на осложненной фоном нормальной структуре биоткани. Он может не заметить мелких деталей в изображении, которые система разрешает, или пропустить слабоконтрастную структуру, видимую на фоне шумов изображения, из-за сложного строения окружающих (или сверхлежащих) тканей. Субтракционный метод (метод вычитания изображений) в рентгенографии позволяет устранить большую часть паразитной фоновой структуры и тем самым увеличить вероятность выявления важных деталей на рентгенограмме.

Особенная ценность применения цифровой рентгенографии заключается в возможности полного отказа от рентгеновской пленки и связанного с ней фотохимического процесса. Это делает рентгенологическое исследование экологически чище, а хранение информации в цифровом виде позволяет создать легкодоступные рентгеновские архивы. Новые количественные формы обработки информации открывают широкие возможности стандартизации получения изображений, приведения их к стандарту качества в момент получения и при отсроченных повторных исследованиях.

Средства компьютерной обработки изображений существенно увеличивают количество информации, которое удается "извлечь" из отдельной цифровой рентгенограммы, позволяют создавать удобные и доступные архивы диагностических изображений. Немаловажна открывающаяся возможность передачи изображения на любые расстояния при помощи средств компьютерных коммуникаций.

Приведенные соображения с достаточной наглядностью демонстрируют прогрессивность внедрения в практику цифровой рентгенографии, которая сможет перевести диагностическую рентгенологию на новый более высокий технологический уровень. Отказ от дорогостоящих расходных материалов обнаруживает и ее высокую экономическую эффективность, что в сочетании с возможностью уменьшения лучевых нагрузок на пациентов делает ее применение в практике особенно привлекательным.

Настоящий же дипломный проект ориентирован на решение задач связанных с совершенствованием цифрового рентгенографического аппарата SireMobil Compact фирмы Siemens путем внедрения новых технологий и заменой элементной базы модуля ввода/вывода данных.

4 Модуль ввода/вывода системы цифровой рентгенографии

В данном разделе представлена внутренняя структура модуля ввода/вывода данных системы цифровой рентгенографии.

Модуль ввода/вывода данных представляет собой плату сбора данных, которая реализуется по нижеприведенной схеме.

4.1 Структурная схема платы сбора данных

Представленная плата сбора данных, называемая также платами АЦП/ЦАП или ввода-вывода аналоговых сигналов, имеет следующую типовую структуру в наиболее расширенном варианте (рисунок 4.1).

Рисунок 4.1 - Структура платы сбора данных

В данных платах сбора данных используется эффект наложения частот. Физически это означает, что для взятых во времени отсчетов одного гармонического сигнала всегда найдется другой гармонический сигнал более высокой частоты, который пройдет через эти же отсчеты. Таким образом, результат работы АЦП для таких двух сигналов будет одинаков [12].

Страницы: 1, 2, 3