скачать рефераты

скачать рефераты

 
 
скачать рефераты скачать рефераты

Меню

Мобильный офис с антенной решеткой стандарта GSM-900 скачать рефераты

p align="left">В канале передачи сигналов управления (ВССН, "сеть - подвижная станция") передается общая информация о сети (соте), в которой подвижная станция находится в данный момент, и о смежных сотах.

В канале синхронизации (SCH, "сеть - подвижная станция") передается информация о временной (цикловой) синхронизации и опознавании приемопередатчика базовой станции.

В канале подстройки частоты (FCCH, "сеть - подвижная станция") передается информация для синхронизации несущей.

Канал параллельного доступа (RACH, "подвижная станция - сеть") используется подвижной станцией в режиме пакетной передачи ALOHA для доступа к сети в случае, если надо пройти регистрацию при включении или сделать вызов.

Канал разрешенного доступа (AGCH, "сеть - подвижная станция") используется для занятия специальных видов обслуживания (SDCCH или ТСН) подвижной станцией, которая ранее запрашивала их через канал RACH.

Канал вызова (РСН, "сеть - подвижная станция") используется для вызова подвижной станции в случае, когда инициатором вызова является сеть (абонент сети).

На рис. 1.16 а, б показано отображение рассматриваемых каналов на одном физическом канале в структуре 51-кадрового мультикадра.

Линия "вверх" ВССН/СССН каналов используется только для передачи канала параллельного доступа RACH, который является единственным каналом управления от подвижной станции к сети. Подвижная станция может использовать нулевой временной интервал в любом из кадров для осуществления доступа к сети.

На линии "вниз" 51 кадр группируется в 5 групп по 10 кадров, при этом один кадр остается свободным, каждая из этих групп начинается с канала FCCH, за которым следует канал SCH. Остальные 8 кадров в каждой группе образуют два блока из четырех кадров. Первый блок первой группы предназначен для канала ССН, тогда как другие 9 блоков (они называются блоками передачи сигнала вызова) используются для передачи каналов РСН и AGCH общего канала управления СССН. Таким образом, в рассматриваемом случае: 4 кадра используются для канала ВССН, 5 - для FCCH, 5 - для SCH и 36 либо для AGCH, либо для РСН (9 блоков вызова).

Каждая подвижная станция может занимать один из девяти блоков вызова, но каждый вызывной блок может использоваться для вызова более одной станции.

Полная скорость передачи для канала ВССН, а также для канала AGCH/PCH составляет 1,94 кбит/с (4х114 бит за 235 мс).

Существуют и другие переменные структуры, которые могут использоваться в 51-кадровом мультикадре. "Переменными" их называют потому, что их структура изменяется в зависимости от нагрузки в соте. В одном случае может рассматриваться индивидуальный канал управления 8SDCCH/8 в одном физическом канале (рис. 1.16 в, г). Однако, если нагрузка в соте мала, структуру BCCH/CCCH можно объединить с индивидуальным каналом управления SDCCH/4 (рис. 1.16 д, е) в одном физическом канале. Если сота испытывает большую нагрузку, одного физического канала может быть недостаточно для всего трафика BCCH/CCCH. В этом случае временные интервалы 2, 4 и 6 в структуре ВССН также используют для этой цели, однако в этом случае передаются пустые интервалы вместо SCH и FCCH.

Отображение логических каналов на физические каналы осуществляется через процессы кодирования и шифрования передаваемых сообщений.

Для защиты логических каналов от ошибок, которые имеют место в процессе передачи, используют три вида кодирования: блочное - для быстрого обнаружения ошибок при приеме; сверточное - для исправления одиночных ошибок; перемежение - для преобразования пакетов ошибок в одиночные.

Для защиты каналов от подслушивания в каналах связи и управления применяется шифрование.

Дня передачи сообщений по физическим каналам используется гауссовская частотная манипуляция с минимальным частотным сдвигом (GMSK).

1.2.5 Модуляция радиосигнала

В стандарте GSM применяется спектрально-эффективная гауссовская частотная манипуляция с минимальным частотным сдвигом (GMSK). Манипуляция называется "гауссовской" потому, что последовательность информационных бит до модулятора проходит через фильтр нижних частот (ФНЧ) с характеристикой Гаусса, что дает значительное уменьшение полосы частот излучаемого радиосигнала [2]. Формирование GMSK радиосигнала осуществляется таким образом, что на интервале одного информационного бита фаза несущей изменяется на 90°. Это наименьшее возможное изменение фазы, распознаваемое при данном типе модуляции. Непрерывное изменение фазы синусоидального сигнала дает в результате частотную модуляцию с дискретным изменением частоты. Применение фильтра Гаусса позволяет при дискретном изменении частоты получить "гладкие переходы". В стандарте GSM применяется GMSK-модуляция с величиной нормированной полосы

ВТ = 0,3

где В - ширина полосы фильтра по уровню минус 3 дБ, Т - длительность одного бита цифрового сообщения. Принципиальная схема модулятора показана на рис. 1.17.

Рис. 1.17 Принципиальная схема модулятора

Рис 1.18 Временные диаграммы

1.3 Обработка речи в стандарте GSM

1.3.1 Общее описание процессов обработки речи

Процессы обработки речи в стандарте GSM направлены на обеспечение высокого качества передаваемых сообщений, реализацию дополнительных сервисных возможностей и повышение потребительских качеств абонентских терминалов.

Обработка речи осуществляется в рамках принятой системы прерывистой передачи речи. Система прерывистой передачи речи (DTX) обеспечивает включение передатчика только тогда, когда пользователь начинает разговор и отключает его в паузах и в конце разговора. DTX управляется детектором активности речи (VAD), который обеспечивает обнаружение и выделение интервалов передачи речи с шумом и шума без речи даже в тех случаях, когда уровень шума соизмерим с уровнем речи. В состав системы прерывистой передачи речи входит также устройство формирования комфортного шума, который включается и прослушивается в паузах речи, когда передатчик отключен. Экспериментально показано, что отключение фонового шума на выходе приемника в паузах при отключении передатчика раздражает абонента и снижает разборчивость речи, поэтому применение комфортного шума в паузах считается необходимым. DTX процесс з приемнике включает также интерполяцию фрагментов речи, потерянных из-за ошибок в канале.

Структурная схема процессов обработки речи в стандарте GSM показана на рис. 1.19, главным устройством в этой схеме является речевой кодек.

Рис. 1.19 Структурная схема процессов обработки речи в стандарте GSM.

1.3.2 Детектор активности речи

Детектор активности речи (VAD) играет решающую роль в снижении потребления энергии от аккумуляторной батареи в портативных абонентских терминалах. Он также снижает интерференционные помехи за счет переключения свободных каналов в пассивный режим. Реализация VAD зависит от типа применяемого речевого кодека. Главная задача при проектировании VAD - обеспечить надежное отличие между условиями активного и пассивного каналов. Если канал на мгновение свободен, его можно заблокировать, поскольку средняя активность речи говорящего ниже 50%, то это может привести к существенной экономии энергии аккумуляторной батареи. К устройствам VAD предъявляются следующие основные требования:

- минимизация вероятности ложной тревоги при воздействии только шума с высоким уровнем;

- высокая вероятность правильного обнаружения речи низкого уровня;

- высокое быстродействие распознавания речи, для исключения задержек включения:

- минимальное время задержки выключения. В стандарте GSM принята схема VAD с обработкой в частотной области.

Структурная схема VAD приведена на рис. 1.20. Ее работа основана на различии спектральных характеристик речи и шума. Считается, что фоновый шум является стационарным в течение относительно большого периода времени, его спектр также медленно изменяется во времени. VAD определяет спектральные отклонения входного воздействия от спектра фонового шума. Эта операция осуществляется инверсным фильтром, коэффициенты которого устанавливаются применительно к воздействию на входе только фонового шума. При наличии на входе речи и шума инверсный фильтр осуществляет подавление компонентов шума и, в целом, снижает его интенсивность. Энергия смеси сигнал+шум на выходе инверсного фильтра сравнивается с порогом, который устанавливается в период воздействия на входе только шума. Этот порог находится выше уровня энергии шумового сигнала. Превышение порогового уровня принимается за наличие на входе реализации (сигнал+шум). Коэффициенты инверсного фильтра и уровень порога изменяются во времени в зависимости от текущего значения уровня шума при воздействии на входе только шума. Поскольку эти параметры (коэффициенты и порог) используются детектором VAD для обнаружения речи, сам VAD не может на этой же основе принимать решение, когда их изменять. Это решение принимается вторичным VAD на основе сравнения огибающих спектров в последовательные моменты времени. Если они аналогичны для относительно длительного периода времени, предполагается, что имеет место шум, икоэффициенты фильтра и шумовой порог можно изменять, то есть адаптировать под текущий уровень и спектральные характеристики входного шума.

Рис. 1.20 Структурная схема VAD

VAD с обработкой в спектральной области удачно сочетается с речевым RPE/LTP-LPC кодеком, так как в процессе LPC анализа уже определяется огибающая спектра входного воздействия, необходимая для работы вторичного VAD.

1.3.3 Формирование комфортного шума

Формирование комфортного шума осуществляется в паузах активной речи и управляется речевым декодером. Когда детектор активности речи (VAD) в передатчике обнаружит, что говорящий прекращает разговор, передатчик остается еще включенным в течение следующих пяти речевых кадров. Во время первых четырех из них характеристики фонового шума оцениваются путем усреднения коэффициента усиления и коэффициентов фильтра LPC анализа. Эти усредненные значения передаются в следующем пятом кадре, в котором содержат информацию о комфортном шуме (SID кадр).

В речевом декодере комфортный шум генерируется на основе LPC анализа SID кадра. Чтобы исключить раздражающее влияние модуляции шума, комфортный шум должен соответствовать по амплитуде и спектру реальному фоновому шуму в месте передачи. В условиях подвижной связи фоновый шум может постоянно изменяться. Это значит, что характеристики шума должны передаваться с передающей стороны на приемную сторону не только в конце каждого речевого всплеска, но и в речевых паузах так, чтобы между комфортным и реальным шумом не было бы резких рассогласований в следующих речевых кадрах. По этой причине SID кадры посылаются каждые 480 мс в течение речевых пауз.

Динамическое изменение характеристик комфортного шума обеспечивает натуральность воспроизведения речевого сообщения при использовании системы прерывистой передачи речи.

1.3.4 Экстраполяция потерянного речевого кадра

В условиях замираний сигналов в подвижной связи речевые фрагменты могут подвергаться значительным искажениям. При этом для исключения раздражающего эффекта при воспроизведении необходимо осуществлять экстраполяцию речевого кадра.

Было установлено, что потеря одного речевого кадра может быть значительно компенсирована путем повторения предыдущего фрагмента. При значительных по продолжительности перерывах в связи предыдущий фрагмент больше не повторяется, и сигнал на выходе речевого декодера постепенно заглушается, чтобы указать пользователю на разрушение канала.

То же самое происходит и с SID кадром. Если SID кадр потерян во время речевой паузы, то формируется комфортный шум с параметрами предыдущего SID кадра. Если потерян еще один SID кадр, то комфортный шум постепенно заглушается.

Применение экстраполяции речи при цифровой передаче, формирование плавных акустических переходов при замираниях сигнала в каналах в совокупности с полным DTX процессом значительно улучшает потребительские качества связи с GSM PLMN по сравнению с существующими аналоговыми сотовыми системами связи.

2. МОБИЛЬНЫЙ ОФИС

2.1 Мобильный офис - успех Вашего бизнеса

Идея мобильного офиса уже не нова. Говорить про мобильные офисы начали давно, наверное, с появлением первых локальных сетей. Идея создания удаленной части информационной системы, которая могла бы работать, как в автономном режиме, так и в качестве части сети предприятия всегда занимала умы разработчиков информационных систем. До недавнего времени возможность построения подобных информационных систем могли позволить себе только большие корпорации, так как для этого требовалось использование специализированных глобальных (WAN) сетей, обычно построенных на базе протокола X.25, специального коммуникационного оборудования и программного обеспечения. Использование всего "специального" определяло высокую стоимость построения и эксплуатации подобного решения. Толчком к развитию идеи мобильного офиса стало широкое внедрение сети Интернет и технологий виртуальных сетей. Использование сети Интернет в качестве транспортной магистрали позволило сократить до приемлемого уровня расходы на коммуникационные услуги, при этом отпала необходимость использования специализированного оборудования, а технологии виртуальных сетей открыли возможность использования мобильного офиса в повседневной жизни.

Компьютер, подключенный к всемирной сети Internet занял прочное место в жизни современного делового человека, и связь с внешним миром посредством е-mail, www и пр. стала такой же обыденной и привычной, как телефон.

Современный мобильный офис предоставляет своему пользователю возможность работая дома, в командировке или в дороге, не чувствовать себя оторванным от жизни компании. Пользователю мобильного офиса доступны все сервисы информационной системы, такие, как совместная работа над документами, разделяемые календари и расписание, использование бизнес приложений и многое другое. При этом он может использовать локально подключенное периферийное оборудование для получения результатов работы. Было бы смешно, распечатывая документ из текстового процессора обнаружить, что за ним нужно ехать в другой город. Использование операционных систем семейства Microsoft® Windows® 2000, открывает новые возможности для построения мобильных офисов. Приведем простой пример одной из технологий, реализованной в Windows 2000. Используя технологию IntelliMirror®, пользователь может работать с документами, хранящимися на сетевом сервере, в автономном режиме так же, как если бы он был подключен к серверу через локальную сеть, при этом все изменения внесенные пользователем в документы за время автономной работы при подключении в локальную сеть будут автоматически отображены на сервер. Для тех, кто не любит стандартные средства Microsoft®, существуют альтернативные продукты. Примером является программа фирмы Hummingbird, DocsOpen.

Прошли времена, когда конторские шкафы и полки были забиты горами бумажных документов, собирающих пыль и захламляющих офис. Да и недолог был срок их хранения, по большому счету. Ныне же все больше необходимых документов, заметок и прочего хлама хранится в электронном виде. А уж о том, что многие предпочитают электронную почту и всевозможные программы для интернет-общения телефонной связи и вербальному контакту, и говорить вообще не приходится. Именно для тех, кому необходим доступ к информации, находящейся в Интернете (почта, поисковые сервера, web-страницы), в любое время и в любом месте, и существует так называемый мобильный офис.

Что вообще включает в себя это понятие - "мобильный офис"? Проще всего его охарактеризовать как тандем сотового телефонного аппарата и персонального компьютера (чаше переносного - notebook). И если по поводу компьютера вопросов, как правило, не возникает (на эту роль подойдет практически любой ПК с установленным браузером и программой электронной почты или факс-программой), то выбор телефонного аппарата может превратиться в целую проблему.

Очень часто в сотовые компании обращаются желающие получить возможность доступа к приему-передаче данных при помощи своего cотового телефона. В Екатеринбурге много компаний, занимающихся средствами мобильной связи, конкуренция в плане продаж высокая, а вот грамотную консультацию, к сожалению, получить довольно сложно.

Страницы: 1, 2, 3, 4, 5, 6