скачать рефераты

скачать рефераты

 
 
скачать рефераты скачать рефераты

Меню

Микроконтроллеры для начинающих. И не только скачать рефераты

p align="left">Система прерываний - одна из важнейших частей МК. Особенность систем реального времени заключается в том, что для них чрезвычайно важным параметром является время реакции на внешние события. Поясним на простом примере. Когда Вы производите математический расчёт на компьютере, то обычно запускаете программу, предназначенную для выполнения этих расчётов, и после того, как она загрузится в память компьютера, вводите условие задачи и ждёте результата. Время ожидания в таком случае не имеет принципиального значения (в пределах разумного, конечно) - медленная работа компьютера может раздражать, но на результате это не скажется. Система реального времени предполагает совершенно конкретную, рассчитываемую на этапе разработки скорость реакции системы управления на внешние события. Задержки сверх расчётных здесь просто недопустимы - они могут приводить к катастрофическим последствиям.

Проблемы быстрой реакции на события решаются организацией системы прерываний. Она подразумевает, что для каждого такого события разрабатывается отдельный «кусок» кода, который формирует реакцию МК на него. Этот «кусок» кода называют подпрограммой обработки запроса на прерывание (для краткости часто используют термин подпрограмма прерывания) и размещают в памяти программ по известному адресу. В момент возникновения заданного события сигнал об этом поступает на вход контроллера прерываний. Последний представляет собой устройство, устанавливающее однозначное соответствие между входным сигналом о происшедшем событии и адресом программной памяти, по которому размещена точка входа в подпрограмму обработки запроса прерывания от данного события. Контроллер прерывает выполнение ЦП текущей программы и инициирует его переход на выполнение подпрограммы обработки прерывания. Время, прошедшее с момента возникновения события до начала выполнения первой инструкции подпрограммы прерывания, называют временем реакции МК на событие. После окончания обработки ЦП автоматически возвращается к выполнению прерванной программы.

Другая функция контроллера прерываний - установка приоритетов событий. Понятие приоритет означает, что выполняемая подпрограмма прерывания может быть прервана другим событием только при условии, что оно имеет более высокий приоритет, чем текущее. В противном случае ЦП перейдет к обработке нового события после окончания обработки предыдущего. Контроллер прерываний, входящий в состав МК 8051, имеет пять входов событий: два от внешних устройств, два от таймеров и один от последовательного канала.

Обычно, когда говорят о каком-либо МК, то всегда упоминают семейство, к которому он принадлежит. К одному семейству относят изделия, имеющие одинаковое ядро, под которым понимают совокупность таких понятий, как система команд, циклограмма работы ЦП, организация памяти программ и памяти данных, система прерываний и базовый набор периферийных устройств. Фактически на рис. 1 представлено ядро, ставшее основой для создания сотен других модификаций семейства 8051.

Отличия между его различными представителями заключаются, в основном, в составе периферийных устройств и объёме памяти программ или данных. Поскольку диапазон задач, решаемых МК, чрезвычайно широк, их производители стараются выпустить столько модификаций, чтобы удовлетворить самые разнообразные запросы потребителей. Во многих семействах число модификаций приближается к сотне или даже превышает это значение.

Наиболее важная особенность семейства - программная совместимость на уровне двоичного кода всех входящих в него МК. Это позволяет разработчикам систем заменять одни МК семейства другими без потери наработок своего программного обеспечения. Естественно, чем большее число разновидностей входит в семейство, тем больше шансов выбрать оптимальный вариант, тем привлекательнее это семейство для разработчика. Вопрос правильного выбора семейства МК для новой разработки является стратегическим, так как проблема переноса программного обеспечения между изделиями разных семейств чрезвычайно сложна и даже использование языков высокого уровня не всегда позволяет решить её без больших потерь. К вопросу о критериях выбора мы вернемся в следующих статьях цикла.

Разработка программы - один из наиболее важных этапов в создании устройства на базе МК. Без неё он «мёртв», не реагирует на внешние воздействия и не выдаёт управляющих сигналов.

При включении питания МК немедленно начинает исполнять программу, находящуюся в подключенной к нему памяти программ (обычно это ПЗУ). Её выполнение начинается с некоторого фиксированного адреса, чаще всего нулевого. Адрес - это просто номер ячейки ПЗУ. Процесс осуществляется следующим образом: МК считывает число, хранящееся в памяти программ, и в зависимости от его значения, называемого машинным кодом, выполняет определённые действия над содержимым регистров АЛУ, памяти, портов и т.д. Например, прочитав из памяти программ число 32Н, МК «соображает», что нужно считать значение из входного порта номер 2 и поместить его в регистр-аккумулятор. Часто одного байта для описания действия МК не хватает, и тогда МК считывает из памяти дополнительные байты.

После выполнения действия МК считывает значение из следующей по порядку ячейки памяти и т.д. Совокупность байтов, описывающих одно выполняемое МК действие, называют машинной командой (инструкцией), а совокупность таких команд, которые «понимает» МК, - его системой команд или набором инструкций (Instruction Set). МК разных семейств имеют разные системы команд, то есть машинные коды у них имеют разные значения, хотя и выполняют похожие действия.

Итак, программа для МК представляет собой последовательность чисел, значения которых указывают ему, какие действия выполнять. Результатом разработки программы является компьютерный файл, содержащий эти машинные коды. С помощью программатора ПЗУ его заносят («зашивают») в память программ МК.

Каким же образом составляется эта последовательность машинных кодов - программа для МК? Неужели разработчику необходимо помнить значения машинных кодов и вручную задавать их последовательность? Первые программы для МК создавались именно так, и называлось это программированием в машинных кодах. Ясно, что такой способ разработки программ очень трудоёмок и неэффективен.

Первым шагом в облегчении процесса создания программ была компьютерная программа - так называемый транслятор с языка ассемблера. Идея состояла в том, чтобы выражать выполняемые МК действия на более понятном человеку языке и затем преобразовывать эти выражения в машинные коды. В приведённом выше примере машинной инструкции, которая считывает значение порта 2 и помещает его в аккумулятор, выполняемые действия можно условно обозначить как MOV A, P2.

Здесь слово MOV (от англ. move), называемое мнемоникой инструкции, обозначает пересылку значения, а A и P2, именуемые операндами, указывают, откуда взять значение и куда его поместить. Система подобных обозначений называется языком ассемблера. Программа, написанная на нём, обрабатывается транслятором, который преобразует конструкции языка ассемблера в машинные коды.

Программирование на ассемблере широко распространено по сей день. Трансляторы с языка ассемблера для всех популярных семейств микроконтроллеров бесплатны.

Несмотря на очевидные преимущества программирования на ассемблере перед программированием в машинных кодах, во многих случаях ассемблер недостаточно эффективен для реализации задач разработчика. Дело в том, что МК способен выполнять лишь простейшие действия вроде арифметических операций над целыми числами, пересылок, сравнений и т.п. Для более сложных задач, например, для операций над числами с плавающей запятой, разработчикам приходилось писать специальные подпрограммы, пользоваться которыми неудобно и громоздко. Следующим шагом в разработке программ для МК стало создание специальных компьютерных программ - трансляторов с языков программирования высокого уровня, или компиляторов. Наибольшее распространение получил язык программирования Си.

С появлением трансляторов разработка программ для МК резко упростилась. Если, например, нужно сложить в программе два числа, то теперь достаточно просто написать

a = b + c;

а транслятор преобразует это выражение в необходимую последовательность машинных команда зависимости от типов переменных a, b и c.

Использование языка высокого уровня позволяет разработчику отвлечься от системы команд конкретного МК и оперировать более простыми и понятными человеку категориями. От разработчика требуется только знание общей архитектуры МК, принципов работы необходимых для решения поставленной задачи встроенных периферийных устройств и навыки программирования на языке Си. Функциональное наполнение программы реализуется с помощью средств языка Си, который содержит большое число разнообразных подпрограмм (функций): арифметических, для работы с символьными строками и многих других.

Рассмотрим процесс создания программы для МК на языке Си. В процессе разработки потребуется персональный компьютер.

После уяснения поставленной задачи разработчик пишет исходный текст своей программы на языке Си с помощью любого текстового редактора. Затем он запускает программу-транслятор с языка Си, которая преобразует исходный текст в промежуточный объектный файл. Транслятор управляется с помощью набора ключей (их описание можно найти в его документации), которые указываются в его командной строке. Если при написании программы разработчик допустил синтаксические ошибки, транслятор выдаёт на экран их список с указанием для каждой номера строки в файле исходного текста. Разработчик должен исправить все ошибки. После успешной трансляции объектные файлы нужно обработать редактором связей (линкером), который и генерирует файл программы в машинных кодах.

При использовании языка высокого уровня возникает одна проблема. Преобразование конструкций языка в машинные коды возложено на компилятор, а выполнить это преобразование можно с различной степенью эффективности. Критериями эффективности являются размер машинного кода (чем он меньше, тем, естественно, лучше) и скорость машинного кода. Задача генерации компактного и быстрого кода весьма сложна, и от её решения зависит общее качество компилятора. Современные компиляторы Си используют многоуровневую оптимизацию, особенности архитектуры конкретного МК, позволяют создавать смешанные программы, в которых часть подпрограмм написана на ассемблере.

Описанный процесс выглядит довольно громоздким: разработчик должен вручную запускать разнообразные программы (текстовый редактор, компилятор Си, линкер), помнить управляющие ключи, искать ошибки в программе по номерам строк в файле. Последним на сегодняшний день шагом в облегчении труда разработчика программ для МК стало появление интегрированных сред разработки (Integrated Development Environment, IDE). Интегрированная среда разработки - это компьютерная программа, связывающая воедино все этапы разработки программы. Она совмещает в себе текстовый редактор для написания исходных текстов, трансляторы с ассемблера и Си, линкер, отладчик, справочную информацию по МК и другие средства, необходимые разработчику. Настройка трансляторов, линкера и других компонентов производится не методом указания ключей в командной строке, а в виде диалоговых окон, где нужно только расставить «галочки» в нужных местах. Преобразование исходных текстов программ в файл машинных кодов запускается одной клавишей.

Появление интегрированных сред разработки программ ещё больше повысило эффективность создания программ для МК, позволило разработчику сосредоточиться на сути решаемой задачи и отвлечься от конкретных деталей её реализации.

Интегрированные пакеты для разработки программ выпускают несколько фирм. Пакеты разных производителей схожи между собой по функциям, но различаются предоставляемыми сервисными возможностями, удобством работы и качеством генерируемого машинного кода.

Основные характеристики наиболее популярных пакетов средств разработки приведены в таблице.

4. Символьная отладка программ для МК

За редким исключением программы для МК из-за содержащихся в них ошибок не начинают работать с первого раза и требуют отладки. К вопросам отладки разработчики относятся по-разному. Некоторые из них считают, что достаточно внимательно проанализировать исходный текст, посмотреть с помощью осциллографа, что происходит на выводах МК, и можно исправить все ошибки. Такой способ применим, если разработчик имеет большой опыт, отлично знает применяемый МК и располагает транслятором, который всегда генерирует правильный код (обычно это ассемблер), и достаточным временем.

Другие используют в своей практике самодельные отладочные мониторы - наборы специальных подпрограмм, загружаемых в МК вместе с основной программой. Последняя вызывает в контрольных точках подпрограммы монитора, а те выдают информацию о состоянии ресурсов МК. Таким способом можно отладить практически любую программу, но у него есть недостатки, которые могут оказаться существенными. Во-первых, отладочному монитору необходимо предоставить для работы часть ресурсов МК: как минимум - часть адресного пространства кода и некоторое число ячеек стека, а как максимум - ещё часть ОЗУ и периферийные устройства МК, используемые монитором для отображения информации. Выделить ресурсы отладочному монитору бывает непросто, если основная программа сама активно загружает МК. Например, у МК PIC16C5x (Microchip) всего две ячейки стека, и использовать вызовы подпрограмм отладочного монитора затруднительно. Во-вторых, вызовы монитора отнимают время у основной программы и, следовательно, его нельзя вызывать из критичных ко времени частей программы. В-третьих, создание отладочного монитора, само по себе, требует времени.

Самый эффективный способ отладки программ для МК - применение специализированных профессиональных отладочных средств, к которым следует отнести отладчики-симуляторы и внутрисхемные эмуляторы.

Прежде чем рассказывать о возможностях, предоставляемых такими отладчиками, необходимо коснуться выбора компилятора, с помощью которого исходные тексты программ преобразуются в машинный код. В подавляющем большинстве случаев предпочтительно программирование на языке высокого уровня. Использование ассемблера необходимо, если к размеру и быстродействию генерируемого кода предъявляются очень жёсткие требования, В настоящее время таких случаев становится всё меньше, так как практически всегда можно взять более «быстрый» МК с большим объёмом памяти. Кроме того, современные пакеты кросс-средств позволяют легко писать смешанные программы, где часть модулей написана на Си, а наиболее критичные к быстродействию части - на ассемблере. Компиляторы Си позволяют также вставлять в исходные тексты ассемблерные инструкции.

Каковы же преимущества программирования на Си по сравнению с программированием на ассемблере? Вкратце они заключаются в следующем:

Ш отпадает необходимость заботиться об операциях с числами большой разрядности. Компилятор автоматически сгенерирует правильный код для операции a + b, если a и b будут 8-, 16-, 32-битными числами, числами с плавающей запятой и даже числами разных типов;

Ш в комплекте с компилятором поставляется обширная библиотека функций (подпрограмм), реализующих различные математические операции (тригонометрические функции, возведение в степень и т.п.), работу с символьными строками, форматированный ввод / вывод и т.д.;

Ш многие ошибки программиста диагностируются компилятором: он, например, не позволит передать функции неверное число параметров или параметры неверных типов, забыть поставить оператор возврата и т.п.;

Ш исходный текст, написанный на Си, гораздо легче читается, он компактнее, легче модифицируется;

Ш программы, написанные на Си, легче переносятся на MК других семейств.

Чтобы эффективно отлаживать программы, написанные на языке высокого уровня, разработчик должен иметь в своём распоряжении отладочные средства, предоставляющие адекватные возможности по отображению используемых в программе данных, а также по отслеживанию выполнения программы по её исходному тексту. Для обеспечения таких возможностей необходимы два условия:

Ш компилятор должен предоставлять достаточную информацию о структуре программы и используемых ею данных. Эту информацию называют символьной (отладочной);

Ш отладчик должен уметь интерпретировать эту информацию.

Страницы: 1, 2, 3, 4