скачать рефераты

скачать рефераты

 
 
скачать рефераты скачать рефераты

Меню

Метрологическое обеспечение и стандартизация измерений напряжения и тока скачать рефераты

Достоинства: возможность перемножать измеряемые величины, т.е, измерять мощность; малая погрешность, так как в механизме нет железа; применимость в цепях постоянного и переменного (в том числе несинусоидального) тока; высокая точность; фазочувствительность.

Недостатки: малая чувствительность; низкая перегрузочная способность; большое потребление энергии; сложность конструкции; нелинейность шкалы; влияние температуры, частоты и внешнего магнитного поля.

Для уменьшения влияния магнитных полей электродинамические приборы часто изготовляют астатическими.

Промышленность выпускает много щитовых и переносных амперметров, вольтметров и ваттметров электродинамической системы для применения в цепях постоянного и переменного тока с частотой 50, 400, 1000, 2000 и 3000 Гц. Класс точности щитовых приборов 1,5; переносных -- 0,2; 0,5 и 1,0.

Амперметры. Для измерения силы тока обе катушки соединяют параллельно или последовательно (рис. 1.7, а).

Рис. 1.7. Соединение катушек электродинамического прибора для работы его в качестве: а -- амперметра; б -- вольтметра; в -- ваттметра

Щитовые амперметры непосредственного включения выпускают с пределами измерения от 1 до 200 А. Расширение пределов (до 6 кА) осуществляется при помощи измерительных трансформаторов тока. Переносные амперметры имеют шкалы от 5 мА до 10 А.

Вольтметры. Для измерения напряжения обе катушки соединяют последовательно (рис. 1.7, б).

Щитовые вольтметры непосредственного включения выпускаются со шкалами до 450 В, переносные -- от 7,5 до 600 В. Для расширения пределов измерения вплоть до 30 кВ применяют измерительные трансформаторы напряжения.

Ферродинамические приборы являются разновидностью электродинамических с тем отличием, что неподвижные катушки заключены в сердечнике из ферромагнитного материала. Такая конструкция обеспечивает значительное увеличение вращающего момента и хорошую защиту от внешних магнитных полей. Однако наличие сердечника приводит к увеличению погрешности прибора.

1.5 Электростатические приборы

Электростатические измерительные приборы могут быть использованы для измерений, как на постоянном, так и на переменном токе. Измерительный прибор состоит из конденсатора, электроды которого закреплены так, что имеется возможность, прикладывая электрическое напряжение, получать механическое усилие, действующее в направлении увеличения емкости. Изменение емкости может осуществляться путем изменения либо эффективной площади электродов, либо расстояния между электродами.

Принцип действия основан на взаимодействии электрически заряженных подвижных и неподвижных проводников (пластин).

Конструктивно они выполняются в виде неподвижной и подвижной пластин, к которым прикладывается измеряемое напряжение (рис. 1.8).

Рис. 1.8. Устройство электростатических приборов: а -- с изменяющейся рабочей площадью пластин; б -- с изменяющимся расстоянием между пластинами; в -- высоковольтного

1 и 2 -- (неподвижная и подвижная пластины; 3 -- высоковольтный электрод; 4 -- заземленный электрод; 5 - металлическая труба; 6 - изолятор

Электростатические приборы являются вольтметрами и киловольтмет-рами, пригодными для измерения постоянного и переменного напряжения. Шкала, градуированная на постоянном напряжении, справедлива для действующего значения переменного напряжения любой формы.

Достоинства: большие пределы измерений (до 1 MB); при измерении постоянного напряжения мощность от измеряемой цепи не потребляется и входное сопротивление стремится к бесконечности; широкий диапазон частот измеряемых напряжений (до 30 МГц).

Недостатки: малая чувствительность; изменение емкости в процессе измерения; малая надежность; нелинейность шкалы; влияние температуры окружающей среды и внешнего электрического поля.

Для уменьшения влияния внешнего электрического поля применяется экранирование. Электростатический экран представляет собой в простейшем виде слой электропроводящей краски на внутренних стенках корпуса прибора. Экран лучшего качества делают из латунной фольги.

Электростатические приборы выполняют в виде щитовых и переносных вольтметров и киловольтметров для применения в цепях постоянного и переменного тока с частотой от 20 Гц до 30 МГц. Ограничение рабочей частоты обусловлено собственной резонансной частотой входной цепи, определяемой входной емкостью прибора и индуктивностью вводов и подводящих проводов.

Входная емкость для разных приборов составляет от 4 до 30 пФ и резонансная частота -- от 50 до 180 МГц. Щитовые приборы выполняют со шкалами от 30 В до 3 кВ класса 1,0 и 1,5 на частоты до 1 МГц. Переносные -- со шкалами от 30 В до 3 кВ класса 0,5; 1,0 и 1,5 на частоты до 30 МГц. Выпускаются высоковольтные вольтметры на 2) --75, 100 и 300 кВ класса 1,0 и 1,5 на частоты от 50 кГц до 5 МГц.

На рис. 1.8, показана конструкция одного из киловольтметров.

1.6 Термоэлектрические приборы

При настройке и контроле режима антенных и других колебательных систем радиотехнических устройств возникает необходимость в измерении токов высоких частот. Электромагнитные и электродинамические приборы непригодны для этой цели из-за больших значений индуктивностей катушек и входных емкостей. Ограниченно используются и выпрямительные приборы, обладающие значительной входной емкостью. Наибольшее применение для измерения токов в широком диапазоне высоких и низких частот получили термоэлектрические приборы.

Термоэлектрический прибор - магнитоэлектрический механизм с термопреобразователем. Приборы с термопреобразованием предназначены для работы в цепях переменного тока в диапазоне низких и высоких частот. Термоэлектрический прибор состоит из термоэлектрического преобразователя и магнитоэлектрического милли- или микроамперметра (рис. 1.9).

а) б) в)

Рис.1.9. Термоэлектрический прибор

а) контактный термопреобразователь; б) бесконтактный термопреобразователь; в) - вакуумный термопреобразователь

В контактном преобразователе имеется гальваническая связь между нагревателем и термопарой, т.е. между входной и выходной цепями, что не всегда допустимо. В бесконтактном преобразователе нагреватель отделен от термопары стеклянной или керамической бусинкой, так что между ними существует только незначительная емкостная связь. Чувствительность бесконтактного преобразователя ниже, чем контактного. В вакуумном термопреобразователе нагреватель и термопара помещены в стеклянный баллончик с давлением воздуха 10-3--10-4 Па.

Нагреватель представляет собой тонкую проволочку из манганина или нихрома. Термопара состоит из разнородных металлов или сплавов, устойчивых при высоких температурах. Распространены пары хромель--копель, рабочая температура 600--800 °С, термоЭДС при 100 °С -- 6,95 мВ. В образцовых термопреобразователях применяется пара платина -- платинородий, работающая при температуре 17-50 °С; термоЭДС при 100 °С -- 0,64 мВ.

Максимальное значение измеряемого тока определяется сечением нагревателя и составляет от единиц миллиампер до десятков ампер. При необходимости измерения токов больших значений применяют трансформаторы тока. Максимальная частота измеряемого тока также зависит от сечения нагревателя и его длины и при минимальных размерах достигает сотен мегагерц.

Достоинства: независимость показаний от формы кривой измеряемого тока, широкий частотный диапазон.

Недостатки: -- малая чувствительность, неравномерность шкалы, тепловая инерция, недопустимость перегрузки. Влияющими величинами являются температура окружающей среды и частота измеряемого тока.

Для уменьшения дополнительной температурной погрешности последовательно с магнитоэлектрическим миллиамперметром включают резистор из манганиновой проволоки. Дополнительная частотная погрешность зависит от размеров нагревателя, его поверхностного эффекта и паразитной емкости прибора. В приборах с контактным преобразователем эта емкость достигает 10-- 15 пФ, с бесконтактным -- 1 пФ.

Термоэлектрические приборы получили распространение преимущественно в качестве амперметров и миллиамперметров. Термоэлектрические вольтметры применяются редко вследствие малого входного сопротивления и низкой чувствительности.

1.7 Выпрямительные приборы

Для измерения тока и напряжения в цепях повышенной частоты широко применяются выпрямительные приборы, состоящие из выпрямительного преобразователя и магнитоэлектрического микро- или миллиамперметра (рис. 1-10а). В качестве выпрямительных элементов используются полупроводниковые (германиевые или кремниевые) диоды, выпрямляющее действие которых определяется коэффициентом выпрямления. Действие приборов основано на преобразовании с помощью диодов измеряемого переменного тока или напряжения в пропорциональный последнему постоянный ток, регистрируемый чувствительным магнитоэлектрическим измерителем, отсчет, по шкале которого производится в значениях измеряемой величины.

Выпрямительные приборы работают по схемам одно- или двухполупериодного выпрямления. измеряемый ток любой формы вызывает отклонение подвижной части выпрямительного прибора, пропорциональное средневыпрямленному значению. Шкалу выпрямительных приборов всегда градуируют в среднеквадратических значениях тока синусоидальной формы.

Рис.1.10 Выпрямительный прибор

Главными источниками погрешностей выпрямительных приборов являются: погрешность градуировки миллиамперметра; емкость диодов; изменение температуры окружающей среды; выход частоты за пределы рабочего диапазона; отклонение формы кривой измеряемого тока от синусоидальной.

Для измерения больших токов применяют приборы со схемой, представленной на рис. 1.11а. Здесь резисторы R являются шунтами для каждого полупериода тока. В многопредельных амперметрах набор таких шунтов помешают внутри корпус прибора и переключают наружным ручным переключателем. Выпрямительный вольтметр состоит из выпрямительного миллиамперметра и добавочного резистора Rд (рис. 1.11б). Добавочные резисторы располагают внутри корпуса многопредельного вольтметра и переключают их при изменении предела измерения.

Рис.1.11. Схемы выпрямительных приборов

Внутреннее сопротивление выпрямительного вольтметра на каждом пределе разное, поэтому его выражают в виде числа Ом, приходящегося на 1 В, например 6000 Ом/В, 10 000 Ом/В и т.д.

Выпрямительные приборы обычно имеют класс точности не выше 2,5. Это объясняется тем, что различные экземпляры полупроводниковых диодов недостаточно однородны по своим характеристикам и параметрам, которые к тому же со временем несколько изменяются. Поэтому расчет выпрямительного прибора может быть произведен лишь приближенно, в процессе его наладки возникает необходимость в подборе диодов и подгонке электрических номиналов других элементов схемы.

Градуировочная характеристика прибора должна систематически проверяться и корректироваться, особенно при замене выпрямительных элементов. Вследствие зависимости прямого и обратного сопротивлений диодов от температуры приборы имеют заметную температурную погрешность, достигающую 3--4% на каждые 10 К отклонения температуры от 20° С. Способами температурной компенсации и теплоизоляции удается получить диапазон рабочих температур от .--30 до +(40--50)° С.

Достоинства: высокая чувствительность; малое потребление энергии.

Недостатки: низкая точность; малая перегрузочная способность; влияние формы тока.

Выпрямительные приборы получили широкое распространение в качестве комбинированных измерителей постоянного и переменного тока и напряжения. Снабженные источником постоянного напряжения (малогабаритный аккумулятор или химический элемент), они могут также использоваться для измерения электрического сопротивления.

Логарифмические вольтметры представляют собой однопредельные приборы, позволяющие оперативно измерять или контролировать уровни напряжений или токов, изменяющиеся в процессе наблюдения в очень широких пределах (в десятки и сотни раз). Они находят применение при электроакустических измерениях, измерении напряженности поля, снятии характеристик фильтров и в ряде других случаев. Эти приборы должны обладать переменной чувствительностью, высокой при слабых входных сигналах и постепенно понижающейся с возрастанием уровня сигнала. Их шкалы при производстве отсчета в единицах измеряемого напряжения имели бы логарифмический характер, однако при выполнении отсчета в относительных единицах -- децибелах они получаются почти равномерными.

Требуемый вид градуировочной характеристики прибора обычно достигается посредством логарифмического преобразования тока в цепи измерителя, например в результате шунтирования последнего специально подобранным полупроводниковым диодом, включенным в пропускном направлении.

Логарифмические вольтметры аналогично квадратичным вольтметрам часто выполняются на диодных цепочках. Исследуемый сигнал после его выпрямления подводится к измерительному блоку через делитель напряжения, одно из плеч которого является нелинейным. Это плечо обычно состоит из ряда параллельно включенных ветвей, содержащих по резистору и точечному диоду; к последнему подводится опорное напряжение определенного значения, которое изменяется с некоторым шагом от одной ветви к другой.

По мере роста измеряемого напряжения увеличивается число открытых диодов, что ведет к уменьшению коэффициента деления напряжения. Такие вольтметры имеют динамический диапазон измерений до 50 дБ и используются при снятии частотных и других характеристик радиоцепей.

2. Электронные вольтметры

2.1 Определение и классификация

Электронным вольтметром называется прибор, показания которого вызываются током электронных приборов, т.е. энергией источника питания вольтметра. Измеряемое напряжение управляет током электронных приборов, благодаря чему входное сопротивление электронных вольтметров достигает весьма больших значений и они допускают значительные перегрузки.

Электронные вольтметры делятся на аналоговые и дискретные. В аналоговых вольтметрах измеряемое напряжение преобразуется в пропорциональное значение постоянного тока, измеряемое магнитоэлектрическим микроамперметром, шкала которого градуируется в единицах напряжения (вольты, милливольты, микровольты). В дискретных вольтметрах измеряемое напряжение подвергается ряду преобразований, в результате которых аналоговая измеряемая величина преобразуется в дискретный сигнал, значение которого отображается на индикаторном устройстве в виде светящихся цифр.

Аналоговые и дискретные вольтметры часто называют стрелочными и цифровыми соответственно.

По роду тока электронные вольтметры делятся на вольтметры постоянного напряжения, переменного напряжения, универсальные и импульсные. Кроме того, имеются вольтметры с частотно-избирательными свойствами -- селективные.

При разработке электронных вольтметров учитываются следующие основные технические требования: высокая чувствительность; широкие пределы измеряемого напряжения; широкий диапазон рабочих частот; большое входное сопротивление и малая входная емкость; малая погрешность; известная зависимость показаний от формы кривой измеряемого напряжения. Перечисленные требования нельзя удовлетворить в одном приборе, поэтому выпускаются вольтметры с разными структурными схемами.

2.2 Аналоговые электронные вольтметры

Аналоговые электронные вольтметры применяют для измерения постоянных напряжений, переменных и импульсных напряжений. Электронные универсальные вольтметры могут измерять и постоянные, и переменные напряжения.

Электронные вольтметры постоянного тока имеют усилитель постоянного тока (УПТ), к выходу которого подключается стрелочный измеритель.

Вольтметры переменного напряжения.

Их основными особенностями являются: высокая чувствительность и широкие пределы измерений, которые при использовании усилителей и делителей напряжения охватывают область напряжений от единиц микровольт до тысяч вольт; малая входная емкость (единицы пикофарад) и высокое входное активное сопротивление (до десятков мегом); обширный диапазон рабочих частот (от десятков герц до сотен мегагерц); способность выдерживать большие перегрузки.

К недостаткам электронных вольтметров относятся: необходимость питания от стабильных источников постоянного или переменного напряжения; необходимость в электрической установке стрелки измерителя на нуль или калибровке вольтметра перед началом измерений; сравнительно большая погрешность измерений (до 3--5%).

Электронный вольтметр переменного напряжения состоит из преобразователя переменного напряжения в постоянное, усилителя и магнитоэлектрического индикатора. Часто на входе вольтметра устанавливается калиброванный делитель напряжения, с помощью которого увеличивается верхний предел измеряемого напряжения.

В зависимости от вида преобразования показание вольтметра может быть пропорционально амплитудному (пиковому), средневыпрямленному или среднеквадратическому значению измеряемого напряжения. Однако следует иметь в виду, что шкалу любого электронного вольтметра градуируют в среднеквадратических (действующих) значениях напряжения синусоидальной формы. Исключение составляют импульсные вольтметры, шкалу которых градуируют в амплитудных значениях.

Страницы: 1, 2, 3