скачать рефераты

скачать рефераты

 
 
скачать рефераты скачать рефераты

Меню

Локальные сети скачать рефераты

пецификации физического уровня определяют скорости передачи данных 4 и 16 Мбит/сек, физическая топология - звезда. Узлы подключатся через специальное коммуникационное устройство - MSAU. MSAU формирует логическое кольцо, обеспечивая передачу сигналов на вход узла (сверху по кольцу) и прием на выходе узла (вниз по кольцу). При неработающем узле обеспечивается передача сигналов в обход узла для сохранения корректности работы. Предусмотрена специальная процедура включения узла в кольцо, и включение узла и выключение приводит к кратковременной потере работоспособности.

В целом, организация работы сети существенно сложнее, чем в сети Ethernet. В сетях с топологией общая шина и вероятностным доступом все узлы обладают равноправным доступом и выполняют одинаковые процедуры. В Token ring процедуры управления работой существенно сложнее, поэтому функции узлов различны. Основные задачи управления выполняет один узел - активный монитор, все остальные узлы - резервные мониторы. При отключении активного монитора автоматически выполняется процедура назначения нового активного монитора, его функции по заранее определенному алгоритму возлагаются на один из резервных мониторов.

Активный монитор следит за корректностью работы кольца: формирует и отправляет маркер, контролирует движение кадров в кольце, обеспечивает синхронизацию и т.д.

3. Промышленные сети (Fieldbus)

Термин Fieldbus - промышленные сети - это технологии передачи данных, ориентированные на применение в задачах управления техническими объектами. Объектом управления может служить и относительно простой бытовой агрегат, и промышленное технологическое оборудование, и целое производство. Требования, предъявляемые к системам передачи данных, могут быть различными и зачастую весьма противоречивыми. Основой построения промышленных сетей являются процедуры и алгоритмы, которые показали высокую эффективность и гибкость в классических компьютерных сетях. Следует иметь в виду, что технологии телекоммуникационных сетей достаточно просто и полно согласуются с современными требованиями и тенденциями в системах управления. Это постоянно возрастающая "интеллектуализация" всех устройств, необходимость в функциональной гибкости, простота модернизации, работа в реальном масштабе времени, высокая надежность, управляемость и самовосстанавливаемость при нештатных ситуациях, низкие затраты на создание и эксплуатацию.

Естественно, что одного решения на все случаи найти невозможно. В настоящее время применяются и продолжают развиваться несколько сетевых технологий. Это Foundaition Fieldbus, Profibus, CAN сети и другие. Первые два протокола содержат по две различные технологии передачи данных: на нижнем уровне сети - система передачи данных низкоскоростная (31,5 кбит/с) для локальных систем управления, на верхнем уровне - Ethernet (100 Мбит/с) для объединения локальных систем в единые АСУ. Протоколы содержат средства организации взаимодействия между этими двумя сетевыми уровнями. В CAN сети протоколы определяют только нижний уровень сети, но с большими функциональными возможностями. В то же время нет никаких препятствий для организации взаимодействия с более производительными телекоммуникационными технологиями с помощью средств выходящих за рамки CAN протокола.

В большинстве промышленных сетей используют топологию связей - общая шина. Такая топология является наиболее эффективной в силу простоты реализации, функциональной гибкости, легкости модернизации действующих систем, низкой стоимости. В большинстве протоколов в качестве линий связи используют витые пары. Важными требованиями, которым должны удовлетворять промышленные сети, являются высокая надежность и необходимость работать в условиях высокого уровня помех, создаваемых работающим технологическим оборудованием.

3.1 CAN сети

CAN протокол, созданный фирмой Bosch для автомобильной электроники в 80-х годах, хорошо согласуется с основными требованиями нижнего уровня промышленных сетей. Он обладает высокой гибкостью, неразрушающим арбитражем доступа к шине, встроенными эффективными средствами контроля и диагностики с возможностью отключения дефектных узлов. В настоящее время CAN сети - одна из наиболее перспективных технологий промышленных сетей. CAN протокол давно вышел за рамки фирменной разработки и утвержден в качестве международного стандарта. Существует ряд международных организаций и объединений, которые обеспечивают необходимый уровень стандартизации. Например, организация CiA объединяет более 300 фирм, которые либо разрабатывают и производят средства для построения CAN сетей, либо заняты их внедрением в различных сферах; CAN протоколы поддерживаются международной ассоциацией автомобильных инженеров SAE.

CAN протокол, так же как и другие протоколы локальных сетей, определяет 2 уровня модели OSI - физический и канальный. Технология передачи данных основана на тех же принципах: использование общих ресурсов, стандартизация алгоритмов и процедур, интеллектуализация средств реализации этих алгоритмов и процедур. Для прикладных задач протокол не нуждается в реализации остальных уровней модели OSI и поэтому очень часто описывается упрощенной трехуровневой моделью. Третий прикладной уровень выходит за рамки CAN протокола и обычно называется HLP протоколом. В настоящее время применяют различные HLP протоколы, хотя в ряде случаев их применение необязательно. В то же время HLP протоколы могут существенно облегчить согласование требований прикладных задач с возможностями CAN сети.

CAN протокол в рамках стандартов ISO11898, ISO11519 и J1939 (SAE) утвержден на базе протокола CAN 2.0 A/B (Bosch) и определяет физический и канальный (MAC) уровни телекоммуникационной сети. В отличие от классических компьютерных сетей, CAN сети ориентированы на передачу сообщений небольших размеров - до 8 байт. Благодаря ряду особенностей поддерживают работу в реальном масштабе времени, мультимастерность, прием и обработку сообщений любым количеством узлов сети, неразрушающий механизм арбитража, самоконтроль и самодиагностику узлов, любой узел обладает возможностью запрашивать необходимые данные. Все эти особенности, а также размеры и формат сообщений, сформированные по требованиям систем управления техническими объектами, определяют высокую эффективность и популярность CAN сетей.

Конечно, многие вопросы построения сети выходят за рамки CAN протокола. Решению этих вопросов посвящены HLP протоколы. Это, например, возможность передачи сообщений больших размеров и основные алгоритмы контроля и восстановления утерянных сообщений (LLC процедуры), инициализация сети с автоматическим определением параметров передачи данных, способы определения идентификаторов в сети и их распределение между узлами, структура сообщений и многое другое.

Основными особенностями CAN сети являются механизм неразрушающего арбитража доступа к разделяемой среде передачи данных и отсутствие явно определенной адресации узлов и сообщений. В большинстве случаев реализуется адресация сообщений. Побитовый неразрушающий арбитраж доступа к разделяемой среде передачи данных (общей шине) реализуется использованием рецессивного и доминантного уровней сигналов. С помощью доминантного сигнала уровень приоритета устанавливается для сообщений, а не для узлов, хотя и используется близкий к Ethernet метод вероятностного доступа с прослушиванием несущей.

Для построения CAN сети применяются стандартные аппаратные средства: CAN - контроллеры и трансиверы (приемопередатчики). Многие ведущие производители выпускают такие устройства в виде интегральных схем. Трансиверы обеспечивают прием и передачу сигналов по линиям связи (физический уровень), а CAN - контроллеры управляют доступом к разделяемой среде передачи данных, а также производят подготовку и обработку передаваемых кадров (канальный и частично физический уровень)

3.1.1 Физический уровень CAN сети

Передача сигналов производится по двухпроводной линии, классический вариант - витая пара. Могут применяться и другие физические линии связи, например, предусматривается возможность передачи по линии связи и сигналов, и питающего напряжения. Скорость передачи данных стандартизована и может лежать в диапазоне от 10 кбит/с до 1 Мбит/с. Из-за особенностей алгоритма арбитража применяется сигнальный код NRZ, а максимальная длина линии связи и скорость передачи данных жестко связаны. Время двойного оборота, которое определяется задержкой сигналов, должно быть меньше длительности одного битового интервала. На количество узлов ограничений нет.

Побитовый неразрушающий арбитраж использует доминантный и рецессивный уровни сигналов в линии связи. Если трансиверы двух узлов формируют разные уровни сигналов, то в линии связи будет передаваться доминантный уровень. Протокол предполагает контроль уровня сигнала в линии связи параллельно с передачей, если сигнал в линии отличается от передаваемого, узел обязан прервать передачу. Таким образом, передача сообщения с доминантными сигналами всегда будет продолжаться, а передача сообщения с рецессивными сигналами может быть прервана при одновременной работе нескольких трансиверов.

CAN протокол амплитуду сигналов жестко не определяет, границы сигналов заданы на уровне 1/3 от напряжения питания. При стандартном напряжении 5 В эти границы составляют 1,5 В и 3,5 В. Доминантный сигнал (0) соответствует напряжению больше 3,5 В на шине CAN H и напряжению меньше 1,5 В на шине CAN L. Рецессивный уровень (1) - одинаковые напряжения на обеих шинах. Входы трансиверов идентифицируют сигналы по разности напряжений, поэтому синфазные помехи не приводят к искажению сигналов. Для повышения надежности в трансиверах рекомендуется применять стандартные средства гальванической развязки.

Синхронизация требует выделения синхросигналов из принимаемых сигналов.Т. к. код NRZ предполагает переключение сигналов только на границах битовых интервалов, протокол запрещает передачи длинных последовательностей одинаковых сигналов. Используемый алгоритм бит-стаффинга реализует добавление противоположного бита после любой последовательности, содержащей пять одинаковых бит. Это позволяет обеспечить надежную синхронизацию при передаче произвольных битовых последовательностей. Кроме того, последовательности, содержащие более пяти одинаковых бит подряд, используются как сообщения об ошибках.

Тактовые генераторы всех узлов автономны и должны работать на номинально одинаковых частотах. Для обеспечения надежной синхронизации битовый интервал (время передачи одного бита, определяемое скоростью передачи) разбивается на временные кванты (период тактовых импульсов). В битовом интервале по стандарту может содержаться от 8 до 25 временных квантов. Для синхронизации всегда используется первый временной квант каждого битового интервала, а идентификация сигнала производится в последней четверти битового интервала (sample point). Максимальное расхождение во временных границах не превышает одного временного кванта для узлов с несколько отличающимися реально тактовыми частотами (частоты совпадают только номинально). И это расхождение не выводит точку идентификации (sample point) за допустимые пределы. Синхроимпульсы формируются по каждому переключению из доминантного в рецессивный уровень. Т.к. бит-стаффинг запрещает в кадре передачу более 5 одинаковых бит подряд, синхроимпульсы будут формироваться не реже одного раза за десять битовых интервалов. Разница в тактовых частотах узлов сети не должна приводить к ошибкам синхронизации за этот период, что несложно обеспечить современными аппаратными средствами.

Рекомендуемые значения скоростей передачи (с указанием максимальной длины линий связи), временных квантов (величина обратная тактовой частоте) и количества временных квантов в битовом интервале приведены в таблице. Стандартное номинальное значение тактовой частоты, необходимое для синхронизации на максимальной скорости, равно 8 МГц.

Для решения основных задач физического уровня выпускаются интегральные схемы трансиверов для различных стандартных напряжений питания и типов линий связи в соответствии с требованиями CAN протокола.

3.1.2 Канальный уровень CAN сети

Реализация процедур CAN протокола производится специальными аппаратными средствами - CAN контроллерами. Эти контроллеры выпускаются либо в виде отдельных интегральных схем, либо являются встроенными элементами более сложных устройств. CAN контроллер в комплекте с ИС CAN трансивера обеспечивает работу локальной сети, реализуя все необходимые функции: от управления доступом к разделяемой среде передачи данных (MAC - процедуры) до передачи сигналов по линии связи. Для HLP протоколов остаются только функции настройки сети: автоматический выбор и задание скорости передачи, поддержка алгоритмов контроля сообщений, передача сообщений большого объема, автоматическое распределение идентификаторов в сети и т.п. Эти задачи могут быть решены без HLP протоколов, при проектировании сети можно вручную задать все необходимые параметры и режимы и произвести настройку CAN контроллеров. HLP протоколы позволяют автоматизировать эти процедуры и в ряде случаев изменять их в процессе работы.

CAN сеть мультимастерная, т.е. все узлы имеют равные права доступа. Если шина свободна, каждый из узлов в произвольный момент времени может начинать передачу сообщения (кадра). Все передаваемые сообщения принимаются всеми узлами, CAN контроллер каждого узла содержит фильтр сообщений. Этот фильтр может быть настроен на обработку сообщений с определенными идентификаторами, все остальные сообщения будут игнорироваться. Т.е. сообщения в сети могут приниматься и обрабатываться любым числом узлов в зависимости от настройки их входных фильтров. Это позволяет, например, обрабатывать сообщения одного датчика всеми узлами, которым эти данные необходимы.

При попытке одновременной передачи кадров несколькими узлами работает механизм поразрядного неразрушающего арбитража, обеспечивающего первоочередной доступ сообщениям с высоким уровнем приоритета (Carrier Sense Multiple Access with Collision Detection and Arbitration on Message Priority - CSMA/CD+AMP). Передача приоритетного сообщения будет продолжена, а остальные узлы должны прервать передачу до освобождения шины. Уровень приоритета определяется положением и количеством доминантных бит в поле арбитража, в котором передается идентификатор сообщения. Меньшему значению идентификатора соответствует более высокий уровень приоритета.

Каждый передающий узел, формируя сигналы на шине, контролирует ее состояние и продолжает передачу до тех пор, пока состояние шины и передаваемые сигналы совпадают. Прекращение передачи происходит только при передаче рецессивного бита, если одновременно какой-либо другой узел передает доминантный бит. При этом узел, формирующий доминантный бит, передачу сообщения продолжит.

Содержание передаваемых данных обозначается 11-битным идентификатором (29-битный идентификатор в расширенном формате), стоящим в самом начале сообщения. Особенностью является то, что этот идентификатор определяет приоритет сообщения. Кроме того, идентификаторы присваиваются не узлам, а сообщениям и определяются содержащимися в сообщениях данными. Такой тип рассылки сообщений называется "схема адресации, ориентированная на содержимое". При этом один узел может отправлять сообщения с различными идентификаторами в зависимости от характера передаваемых данных, а также принимать и обрабатывать сообщения с различными идентификаторами в зависимости от настройки входных фильтров.

В результате применения схемы адресации, ориентированной на содержимое, обеспечивается высокая степень конфигурируемости и гибкости системы. Добавление в сеть новых узлов может осуществляться без модификации аппаратной или программной части сети.

CAN протокол предусматривает два алгоритма передачи данных:

передающий узел самостоятельно передает кадр данных, остальные узлы его принимают и обрабатывают;

узел может послать запрос на необходимые данные, по этому запросу узел-источник данных передает сообщение, которое, как и в первом случае, принимается и обрабатывается.

Данные передаются в кадре данных (data frame), а для запроса данных предусмотрен кадр запроса (remote frame), имеющий сходную структуру. Кадр для передачи по шине состоит из семи основных полей. CAN протокол поддерживает два формата кадров (стандартный и расширенный), которые различаются только длиной идентификатора (ID).

Кадр стандартного формата начинается стартовым битом "начало кадра" (SOF - Start of Frame). За ним следует поле арбитража, содержащее 11-битный идентификатор и бит RTR запроса удаленной передачи (Remote Transmission Request). Этот бит указывает, передается ли кадр данных (0) или кадр запроса (1), в котором отсутствует поле данных.

Страницы: 1, 2, 3