скачать рефераты

скачать рефераты

 
 
скачать рефераты скачать рефераты

Меню

Концепция построения и этапы совершенствования объединенной системы распределения тактической информации JTIDS скачать рефераты

p align="left">2. Режим с резервированием. Позволяет группе абонентов использовать определенную совокупность кадров по договоренности, что дает возможность организовать в какой-то радиосети объединенной системы в ведомственные подсети станций, выполняющих однородные задачи, доступ в которые «посторонним» участникам радиообмена будет закрыт без соответствующего разрешения управляющей станции сети.

3. Режим с предоставлением на конкурентной основе (предоставление по требованию). Совокупность временных интервалов закреплена за группой абонентов, которые каждый абонент использует по мере надобности, выбирая их из совокупности случайным образом. Вполне возможно, что некоторый интервал будет одновременно занят несколькими абонентами, радиостанции которых работают на передачу. Тогда на приемном конце будут приниматься сигналы более мощной радиостанции - принцип «конкурентной основы».

4. Режим предоставления с переиспользованием. При этом временные интервалы, используемые сетью в одном географическом районе, могут также использоваться другой сетью в другом географическом районе. Что в настоящее время нашло применение в современных системах сотовой связи.

Перечисленные режимы предоставления СВИ позволяют производить циркулярное оповещение корреспондентов в пределах каждой из сетей единой радиосистемы JTIDS, или даже системы в целом.

В реально работающей системе применяются одновременно все или несколько рассмотренных режимов предоставления различных типов СВИ в соответствии с оперативной обстановкой. Что положительно сказывается на пропускной способности системы, ее гибкости, а также помехо- и разведзащищенности.

6. Возможности JTIDS как системы с применением принципов комбинированного расширения спектра системных сигналов

Анализ современных тенденций в области построения военных систем связи свидетельствует о том, что СРС постепенно вытесняют простые сигналы, причем это происходит, в первую очередь, в наиболее важных по своему назначению системах связи.

Специалистами военной связи вообще выделяется достаточное количество способов РС, но ввиду ряда причин, в JTIDS используется комбинированное (DS/FH) РС методами прямой последовательности (DS-direct sequencing) и псевдослучайной перестройкой частоты ППРЧ (FH- frequensy hopping), как следствие поэтапного эволюционирования теории систем с РС.

JTIDS, как система комбинированного РС, спроектирована в интересах минимизации мощности излучения передатчиков, повышения надежности передачи данных за счет увеличения избыточности ШШС.

МО США выделяет для нужд всей системы радиосвязи JTIDS очень широкую полосу частот в 255 МГц, полагая, что этой полосой будут пользоваться одновременно множество сетей, организованных по принципам построения системы JTIDS, и как следствие, ресурс связи системы в целом, будет использоваться с максимальной эффективностью. Предоставление каждой сети системы такого диапазона, позволяет организовать высокие скорости передачи данных в сочетании с высокой надежностью, устойчивостью и достоверностью связи.

В приемо-передающей аппаратуре JTIDS всегда осуществляется последовательно два модуляционных процесса, первый из которых - информационная модуляция, осуществляемая в системе циклическим сдвигом 32-элементной ПСП относительно условного и известного на передающем и приемном концах линии связи нулевого сдвига [1]. В этом случае каждому циклическому сдвигу ПСП сопоставляется по определенному правилу пятиэлементный блок исходной двоичной информации. Для однозначности в системе используются только левые циклические сдвиги. Таким образом, каждый базовый импульс длительностью 6,4 мкс переносит 5 бит информации. При этом все циклические сдвиги составляют, по существу, 32-элементный алфавит передаваемого сообщения. Второй обязательной составляющей модуляционного процесса РС является собственно сама модуляция расширения спектра базового импульса.

На приемной стороне в связи с использованием коррелирующих устройств возрастает помехоустойчивость по отношению к узкополосным помехам большой мощности, что связано с поражением такой помехой только небольшой части ШШС системы, для обычных же СС наличие таковой помехи в полосе рабочих частот неминуемо привело бы к срыву связи, что в условиях функционирования системы управления войсками неприемлемо. ШШС JTIDS, лишенный помехой части своего спектра, реконструируется на приемной стороне без существенных потерь информации, этот факт объясняется тем, что мешающее воздействие помехи в приемнике системы проявляется не более, чем слабым повышением уровня шумового фона (т.к. узкополосная помеха «дробится» на беспорядочную последовательность коротких импульсов), но никак не срывом связи и потерей управления как следствие.

Так как JTIDS относится к СС с комбинированным РС, то это предполагает наличие в приемной аппаратуре радиостанций наличие двух корреляторов: DS- и FH-корреляторы. DS-коррелятор позволяет обнаруживать и идентифицировать сигналы с необходимым PN-кодом, а сигналы, статистически отличные от ожидаемого ШШС, дадут низкий шумовой фон, снимаемый с коррелятора DS. Вследствие усреднения, выполняемым коррелятором сигналы на его выходе будут появляться с запаздыванием, равным длине ПСП. Коррелятор FH подсистемы приема радиостанции функционирует иначе. В FH-режиме частота несущей передатчика «скачет» по выделенным частотным каналам в последовательности, устанавливаемой генератором ПСП передатчика. Приемник же использует ту же опорную ПСП для следования за перемещающейся с канала на канал несущей. Таким образом, информация будет восстановлена.[6]

В результате дополнительной модуляции, о которой уже упоминалось, в JTIDS формируется скрытый помехоустойчивый канал связи, прием информации в котором возможен только в том случае, если известен метод и алгоритм РС передающей стороны.

JTIDS обладает превосходной ЭМС со всеми существующими узкополосными системами радиосвязи. Последним не мешают ШШС системы с малой спектральной плотностью в своей полосе пропускания, а в свою очередь, узкополосные сигналы в приемниках JTIDS, преобразуются в ШШС и эффективно подавляются цепями фильтрации, поскольку не согласованы с ПСП приемника.

Кроме высокой помехоустойчивости, сложная кодовая структура ШШС JTIDS обладает высокой степенью защищенности от несанкционированного доступа к передаваемой в сети информации, а также ее высокой имитостойкости, обусловленной выбором при проектировании концепции системы структурой ПСП РС и наличием методов помехоустойчивого кодирования, что в конечном счете обеспечивает любой требуемый уровень конфиденциальности потока передаваемых данных, что, в принципе, может исключить необходимость использования дополнительных модулей шифрования данных.

Необходимо отметить, что в JTIDS применяется быстрая ППРЧ (БППРЧ), при которой каждый бит информации передается по нескольким каналам и приемник примет несколько "копий" бита. Это дает возможность исключить или максимально снизить эффект потери при любом скачке на приемной стороне, что наблюдается в системах с медленной ППРЧ (МППРЧ). [4,10]

Однако при БППРЧ приемник должен поддерживать когерентность частоты и фазы в канале данных во время быстрых сдвигов частоты, необходимых для быстрой ППРЧ. Это требование влечет за собой увеличение сложности и стоимости аппаратуры, а также затрудняет достижение высоких темпов передачи.

Система радиосвязи JTIDS, как СС с РС, построена с использованием метода хранения опорного сигнала (SR-stored reference). В этом случае опорный сигнал независимо генерируется приемником и передатчиком ведущих радиообмен корреспондентов, в отличие от уже устаревших СС с РС с передачей опорного сигнала (TR- transmited reference). Основным преимуществом JTIDS, относящейся, к SR-системам является то, что при правильном выборе кода ПСП сигнал не может быть определен путем прослушивания (в отличие от TR-систем). [6]

При проектировании JTIDS, в особенности при разработке принципов сигналообразования системы, были учтены необходимые требования, предъявляемые к ПСП.

7. Синхронизация системы

Ввиду того, что JTIDS является цифровой широкополосной системой, то процесс синхронизации составляющих ее компонентов обязателен.

Временная синхронизация сигналов (синхронизация по тактам, по циклам, по сверхциклам) необходима для обеспечения правильного приема и передачи информации в режиме МДВР, возможности оперативной смены сетей, а также для определения времени приема сигналов в процессе решения задач навигационного обеспечения. Одновременно осуществляется и синхронизация сигналов с расширением спектра ШШС и ППРЧ по задержке. Как видим, синхронизация в системе представляет собой 3 взаимосвязанных обязательных процесса, отвечающих за реализацию соответствующих функций и возможностей системы в целом, и нарушение любого из которых, неминуемо приведет к ухудшению тех или иных характеристик системы.

7.1 Временная синхронизация сети

Временная синхронизация всегда производится перед началом работы, при переходе абонента в другую сеть, а также по мере необходимости в процессе работы. В системе JTIDS предусмотрены как активный, так и пассивный режимы синхронизации [1]. При активной синхронизации опорная радиостанция посылает в ответ на запрос радиостанции, входящей в синхронизм, посылку, содержащую точное время запроса. При пассивной - опорная радиостанция периодически излучает посылки, содержащие информацию о сетевом времени и своих координатах. Активный режим отличается большей помехозащищенностью, в то время как пассивный позволяет более экономно использовать пропускную способность системы.

Синхронизация в системе происходит в два этапа. На первом этапе осуществляются первоначальное вхождение в сеть и грубая синхронизация, которая обеспечивает радиосвязь в сети. Для этого достаточно, чтобы после получения специального сообщения, излучаемого управляющей станцией и дающего разрешение на вхождение в сеть станции, ее информационный пакет (3,354 мс) попал в пределы отведенного ему стандартного временного интервала (7,8125 мс). Частота следования таких разрешающих сообщений меняется в зависимости от обстановки. Передача управляющего сообщения осуществляется на фиксированной частоте, так как она предшествует синхронизации скачкообразного изменения частоты сигнала по задержке. [1] Вместе с тем частота каждого последующего управляющего сообщения может изменяться либо периодически, либо по псевдослучайному закону так, что период его повторения на каждой из частот становится значительно большим длительности цикла в 12 с, но цикл в 12 с представляет собой минимальный интервал между последовательными излучениями сетевого опорного сообщения, задающего временную шкалу в пределах сети. Псевдослучайная перестройка частоты передачи управляющего сообщения в пределах суперцикла в сочетании с изменением правила перестройки от суперцикла к суперциклу затрудняет постановку организованных помех каналу синхронизации. Отметим также, что, в отличие от информационных сообщений, в управляющих сообщениях отсутствует джиттер в начале отводимых им СВИ.[1,6]

После этого осуществляется измерение дальности определением времени распространения измерительного сигнала от абонентской до опорной станций и обратно. Радиостанция, входящая в синхронизм, посылает запрос-сообщение на измерение дальности и принимает ответ от станции, находящейся в синхронизме. Процедура может быть осуществлена в пределах одного СВИ, отведенного в сети для измерения дальности. По результатам такой процедуры определяется погрешность оценивания начала СВИ путем определения полуразности между временем приема запроса на синхронизированной радиостанции, измеренном относительно начала одного из СВИ, и временем приема ответа на синхронизирующейся радиостанции, измеренном относительно временного положения середины СВИ. Информация о результатах измерения на синхронизированной радиостанции передается совместно с ответным сообщением в процессе измерения дальности на управляющую станцию.

Последовательная коррекция временной шкалы с использованием результатов измерения дальности составляет содержание второго этапа синхронизации - этапа точной синхронизации. Точная синхронизация производится в активном режиме и одновременно обеспечивает определение местоположения абонентских радиостанций относительно опорной радиостанции, координаты которой в сети стали априорно известны в процессе первого этапа синхронизации. Точная синхронизация достигается последовательной коррекцией временной шкалы с использованием приведенной выше структуры. Точная синхронизация совпадает с синхронизацией сигналов с расширением спектра по задержке и основана на использовании преамбулы информационного пакета.

Абонентские радиостанции после осуществления первоначального вхождения в связь, грубой и точной синхронизации с использованием опорного времени, передаваемого в Р-сообщении, устанавливают временную шкалу с точностью, уступающей точности опорного времени не более чем на порядок.

Временная синхронизация основана на использовании гринвичской системы единого времени. Нулевой сверхцикл начинается в 0.00 час по Гринвичу.[1]

В системе для осуществления временной синхронизации установлена определенная иерархия радиостанций (как и в навигационной подсистеме). Точнее, навигационная подсистема включает в свой состав и станции, обеспечивающие заданные временные параметры синхронизации. Так, одна из радиостанций (обычно управляющая) является носителем опорной временной шкалы, которая используется в качестве стандартной в сети. Для того чтобы установить сетевую шкалу времени, одна из радиостанций в сети должна синхронизироваться от опорной станции в системе. Станция опорного времени излучает сообщения на разрешение вступления в сеть в отведенных для них СВИ и автоматически выдает управляющие сообщения, содержащие также и информацию о высокоточном времени.

7.2Синхронизация сигналов по задержке (синхронизация, обусловленная применением широкополосных сигналов и ППРЧ)

В радиостанциях первоначальная синхронизация генераторов ПСП производится во временной шкале, устанавливаемой по часам оператора, но также предусмотрены встроенные источники единого времени, шкала которых синхронизируется со шкалой UTC (гринвичское время) по сигналам ИСЗ NAVSTAR. Вследствие конечной стабильности тактовой частоты происходит периодическая рассинхронизация генераторов ПСП. Поэтому периодически производится принудительная перезагрузка и перезапуск генераторов ПСП по синхросигналам управляющей станции.

Синхросигнал, как правило, включает синхрослово и ПСП. В составе синхрослова наряду с текущей кодовой комбинацией для загрузки генераторов ПСП передается маркер типа сообщения для автоматического распознавания синхросигнала. Синхросигналы излучаются на подмножестве частот, отведенных данной сети, и внешне не отличаются от текущей информации, что затрудняет их обнаружение и классификацию. Конкретные частоты для передачи синхросигналов определяются базовым ключом. Несмотря на то, что синхрослово формируется с периодом, зависящим от стабильности тактовой частоты, излучение синхрослов осуществляется через псевдослучайные интервалы времени. Это обусловлено несовпадением по времени моментов формирования синхрослова и моментов настройки радиостанции на частоты передачи синхросигналов.

Синхронизация генераторов ПСП является необходимым, но еще недостаточным условием организации связи в режиме ППРЧ. В общем случае для установления сети в режиме ППРЧ в пределах конкретной сети исходными данными служат следующие характеристики:

- адресная группа частот (hop set) -- подмножество рабочих частот, используемых для СИЧ;

- код идентификации сети (net ID), задающий частоту, с которой начинается ППРЧ;

- «время дня» (TOD -- Time-of-Day) -- время начала ППРЧ;

- «слово дня» (WOD -- Word-of-Day), или - правило соответствия адресной группы частот и кодовых комбинаций, формируемых генератором ПСП. [4]

Эти данные получили название ключевых переменных (key variables) и полностью определяют сеть.

Страницы: 1, 2, 3, 4, 5