скачать рефераты

скачать рефераты

 
 
скачать рефераты скачать рефераты

Меню

Информационная защищенность волоконно-оптических линий связи скачать рефераты

злучение периодически переходит из одного волновода в другой.

Отличительной особенностью оптического туннелирования является отсутствие обратно рассеянного излучения, что затрудняет детектирование несанкционированного доступа к каналу связи. Этот способ съема информации наиболее скрытный.

- специальные напыляемые покрытия и оптические смазки основного оптоволокна, которые приводят к эффекту интерференции света в тонких пленках, что позволяет выводить часть излучения также без обратного рассеяния;

- воздействие стационарных электромагнитных полей, что вызывает изменение оптических свойств на границе сердцевина - оболочка оптоволокна, которое приводит к нарушению полного внутреннего отражения.

Надо отметить, несмотря на то, что изменения значения предельного угла, вызываемое как механически напряжениями, так и электрическим полем малы, но комплексное воздействие с другими способами может привести к эффективному способу формирования канала утечки. Рассмотренные выше методы обладают одним недостатком, который позволяет легко фиксировать каналы утечки, созданные на их основе. Это определяется значительным обратным рассеянием света в местах каналов утечки. С помощью рефлектометрии обратно рассеянного света такие подключения легко детектируются с высоким пространственным и временным разрешением.

2. Нарушение отношения показателей преломления

Растяжение представляет собой механическое воздействие без изменения формы волокна.

Растяжение волокна вызывает изменение отношения показателя преломления оболочки к показателю преломления сердцевины оптоволокна.

С учетом того, что плавленый кварц выдерживает большие напряжения (до 106 Па в идеальном состоянии), то, прикладывая большие механические напряжения к оптоволокну, можно добиться изменения предельного угла на величину, достаточную для вывода части интенсивности основного информационного потока за пределы оптического волокна.

К способам, вызывающим изменение отношения показателя преломления оболочки к показателю преломления сердцевины оптоволокна путем механического напряжения, также относится и скручивание оптоволокна.

3. Регистрация рассеянного излучения

Современные оптические волноводы обладают очень маленькими потерями (вплоть до 0,2 дБ/км и менее на длине волны 1,55 мкм) - это позволяет передавать информацию на значительные расстояния без необходимости усиления сигнала. Расстояния между участками ретрансляции составляет более 100 км, что требует генерации световых импульсов значительной мощности. Высокие мощности входного светового потока создают значительное по величине рассеяние на ближайших к ретрансляторам участках, которые можно использовать для формирования каналов утечки информации. Современные приемники оптического излучения позволяют регистрировать световые потоки состоящие практически из одного фотона с временным разрешением менее 1 нс, что соответствует регистрации оптической мощности излучения менее 10-10 Вт.

Рассеянное излучение позволяет сформировать каналы утечки информации, основанные на следующих физических принципах:

- прямое измерение рассеянного излучения на длинах волн носителя информации ;

- регистрация рассеянного излучения на комбинационных частотах;

- специальная “обработка” оптоволокна внешними полями (тепловым, электромагнитным, радиационным), с целью увеличения интенсивности рассеянного излучения.

С помощью внешнего воздействия можно усилить потери в световоде на локальных участках формирования каналов утечки, что вызовет увеличение сигнала утечки.

4. Параметрические методы регистрации проходящего излучения

Оптическое излучение, являющееся носителем информации, при распространении по оптоволокну вызывает изменение его физических свойств. Модуляцию свойств оптоволокна в зависимости от интенсивности световых импульсов можно регистрировать специальными высокочувствительными устройствами. Изменение свойств оптоволокна является основой для формирования канала утечки информации. Среди них можно выделить следующие параметры оптоволокна, модулируемые световым потоком:

-     показатель преломления;

-     показатель поглощения при прохождении света;

-     малые изменения геометрических размеров (фотоупругий эффект);

-     регистрация модуляции свойств поверхности волокна.

Существующая техника измерений позволяет регистрировать очень малые изменения свойств волокна. В частности, применение спектроскопии потерь позволяет регистрировать незначительное изменение показателя поглощения, которое вызывается информационным потоком света.

В заключение надо отметить, что существует много других способов несанкционированного доступа и способов съема информации с оптоволокна. Это опровергает утверждение о невозможности формирования канала утечки из оптического волновода, которое прослеживается в повседневной жизни и в российских нормативных документах. В документе закреплено, что при использовании волоконно-оптических линий связи не требуется шифрование конфиденциальной информации,  в отличии от других каналов передачи информации. Особенностью волоконно-оптических телекоммуникаций является необходимость физического контакта с линией связи для формирования канала утечки.

3. Доказательства уязвимости ВОЛС

Почти все преимущества ВОЛС не вызывают сомнений, но тезис о хорошей защищенности волоконно-оптической линии связи требует разъяснений [2]. Определимся, что применительно к  ВОЛС это означает невозможность перехвата информации без физического нарушения целостности волоконно-оптической линии и отсутствие паразитных наводок.

В Центре компетенций компании «ОТ» был собран стенд для исследования возможной уязвимости ВОЛС, представляющий собой модель распределенного центра обработки данных. Оптическая магистраль имитировалась кросс-панелью с петлей из разделанного многожильного оптического кабеля для внешней проводки. В качестве перехватчика использовалось пассивное устройство типа «ответвитель-прищепка» FOD 5503. Такое устройство создает микроизгиб в волокне и ответвляет сигнал, который может быть получен через имеющийся патч-корд. В процессе тестирования удалось перехватить сигнал, передаваемый в одном направлении.

Следует отметить, что описанные действия можно выполнить без применения специализированного дорогостоящего инструмента (приемлемая стоимость средств перехвата позволяет их использовать не только организациям, но и частным лицам) и за сравнительно небольшое время. Линии связи остались без разрывов: в процессе подготовки стенда кабель был освобожден лишь от внешних защитных оболочек, а волокна находились в защитном цветном буфере толщиной 250 мкм.

Из результатов эксперимента следует такой вывод: уязвимость ВОЛС доказана на практике. А потому в связи с возможностью компрометации передаваемых данных или их модификации необходимо использовать средства криптографической защиты информации, передаваемой по ВОЛС.

4. МЕТОДЫ ЗАЩИТЫ ИНФОРМАЦИИ, ПЕРЕДАВАЕМОЙ ПО

ВОЛС

4.1. ФИЗИЧЕСКИЕ МЕТОДЫ ЗАЩИТЫ

1. Разработка технических средств защиты от НД к информационным сигналам, передаваемым по ОВ.

Данная группа работ связана с разработкой конструкционных, механических и электрических средств защиты от НД к оптическим кабелям (ОК), муфтам и ОВ [3]. Одни из видов средств защиты этой группы построены так, чтобы затруднить механическую разделку кабеля и воспрепятствовать доступу к ОВ. Подобные средства защиты широко используются и в традиционных проводных сетях специальной связи. Также перспективным представляется использование пары продольных силовых элементов ОК, которые представляют собой две стальные проволоки, размещенные симметрично в полиэтиленовой оболочке, и используемые для дистанционного питания и контроля датчиков, установленных в муфтах, и контроля НД. Целесообразно также применение комплекта для защиты места сварки, который заполняет место сварки непрозрачным затвердевающим гелем. Одним из предложенных методов защиты является использование многослойного оптического волокна со специальной структурой отражающих и защитных оболочек. Конструкция такого волокна представляет собой многослойную структуру с одномодовой сердцевиной. Подобранное соотношение коэффициентов преломления слоев позволяет передавать по кольцевому направляющему слою многомодовый контрольный шумовой оптический сигнал. Связь между контрольным и информационным оптическими сигналами в нормальном состоянии отсутствует. Кольцевая защита позволяет также снизить уровень излучения информационного оптического сигнала через боковую поверхность ОВ (посредством мод утечки, возникающих на изгибах волокна различных участков линии связи). Попытки проникнуть к сердцевине обнаруживаются по изменению уровня контрольного (шумового) сигнала или по смешению его с информационным сигналом. Место НД определяется с высокой точностью с помощью рефлектометра.

2. Разработка технических средств контроля НД к информационному сигналу, передаваемому по ОВ.

Вторая группа работ в этом направлении связана с мониторингом "горячих" волокон и разработкой различных устройств контроля параметров оптических сигналов на выходе ОВ и отраженных оптических сигналов на входе ОВ.

Основой системы фиксации НД является система диагностики состояния (далее - СДС) оптического тракта. СДС можно построить с анализом либо прошедшего через оптический тракт сигнала, либо отраженного сигнала (рефлектометрические СДС).

СДС с анализом прошедшего сигнала является наиболее простой диагностической системой. На приемной части ВОЛС анализируется прошедший сигнал. При НД происходит изменение сигнала, это изменение фиксируется и передается в блок управления ВОЛС.

При использовании анализатора коэффициента ошибок на приемном модуле ВОЛС СДС реализуется при минимальных изменениях аппаратуры ВОЛС, так как практически все необходимые модули имеются в составе аппаратуры ВОЛС. Недостатком является относительно низкая чувствительность к изменениям сигнала.

Основным недостатком СДС с анализом прошедшего сигнала является отсутствие информации о координате появившейся неоднородности, что не позволяет проводить более тонкий анализ изменений режимов работы ВОЛС (для снятия ложных срабатываний системы фиксации НСИ).

СДС с анализом отраженного сигнала (рефлектометрические СДС) позволяют в наибольшей степени повысить надежность ВОЛС.

Для контроля величины мощности сигнала обратного рассеяния в ОВ в настоящее время используется метод импульсного зондирования, применяемый во всех образцах отечественных и зарубежных рефлектометров.

Суть его состоит в том, что в исследуемое ОВ вводится мощный короткий импульс, и затем на этом же конце регистрируется излучение, рассеянное в обратном направлении на различных неоднородностях, по интенсивности которого можно судить о потерях в ОВ, распределенных по его длине на расстоянии до 100 - 120 км. Начальные рефлектограммы контролируемой линии фиксируются при разных динамических параметрах зондирующего сигнала в памяти компьютера и сравниваются с соответствующими текущими рефлектограммами. Локальное отклонение рефлектограммы более чем на 0,1 дБ свидетельствует о вероятности попытки несанкционированного доступа к ОВ в данной точке тракта.

Основными недостатками СДС с анализом отраженного сигнала на основе метода импульсной рефлектометрии являются следующие:

- при высоком разрешении по длине оптического тракта (что имеет важное значение для обнаружения локальных неоднородностей при фиксации НД) значительно снижается динамический диапазон рефлектометров и уменьшается контролируемый участок ВОЛТ ;

- мощные зондирующие импульсы затрудняют проведение контроля оптического тракта во время передачи информации, что снижает возможности СДС, либо усложняет и удорожает систему диагностики;

- источники мощных зондирующих импульсов имеют ресурс, недостаточный для длительного непрерывного контроля ВОЛС;

- специализированные источники зондирующего оптического излучения, широкополосная и быстродействующая аппаратура приемного блока рефлектометров значительно удорожает СДС.

4.2. КРИПТОГРАФИЧЕСКИЕ МЕТОДЫ ЗАЩИТЫ

Краткий обзор криптографических методов защиты

1. Метод, основанный на использовании кодового зашумления передаваемых сигналов. При реализации этого метода применяются специально подобранные в соответствии с требуемой скоростью передачи коды, размножающие ошибки. Даже при небольшом понижении оптической мощности, вызванном подключением устройства съема информации к ОВ, в цифровом сигнале на выходе ВОЛС резко возрастает коэффициент ошибок, что достаточно просто зарегистрировать средствами контроля ВОЛС.

2. Метод, основанный на использовании пары разнознаковых компенсаторов дисперсии на ВОЛС. Первый компенсатор вводит в линию диспергированный сигнал, а на приемном конце второй компенсатор восстанавливает форму переданного сигнала.

3. Использование режима динамического (детерминированного) хаоса, который позволяет обеспечить передачу информации с псевдохаотически изменяющимися частотой и амплитудой несущей. В результате выходной сигнал внешне является шумоподобным, что затрудняет расшифровку.

4. Методы квантовой криптографии - соединяют достижения криптографической науки с квантовой механикой и квантовой статистикой. Они потенциально обеспечивают высокую степень защиты от перехвата информации на линии связи за счет передачи данных в виде отдельных фотонов, поскольку неразрушающее измерение их квантовых состояний в канале связи перехватчиком невозможно, а факт перехвата фотонов из канала может быть выявлен по изменению вероятностных характеристик последовательности фотонов.

Пример использования криптографического метода защиты

Для криптографической защиты следует выбрать средства, которые не вносят существенных временных задержек при криптографическом преобразовании передаваемой/принимаемой информации и обеспечивают шифрование/расшифровку для всего диапазона скоростей передачи данных, характерного для каналов SONET/SDH [2].

В качестве таких средств были выбраны устройства SafeEnterprise SONET Encryptor компании SafeNet. Они осуществляют шифрование всего трафика SDH на канальном уровне на скорости от ОС-3 (155,5 Мбит/с) до ОС-48 (2,4 Гбит/с). Их применение прозрачно для протоколов вышележащих уровней и, следовательно, не должно вносить существенной задержки в сигнал. Это предположение было решено проверить серией тестов.

Для проведения новой серии испытаний был собран стенд, имитирующий нагрузку на магистраль передачи данных между основным ЦОД и резервным. Оборудование шифрования трафика SafeEnterprise SONET Encryptor OC3/OC12 подключалось к магистрали SDH и обеспечивало прозрачное для конечных устройств шифрование трафика. Для тестирования использовались встроенные средства OS Sun Solaris, которые создавали нагрузку на дисковую подсистему и измеряли ее параметры. Параметры нагрузки варьировались как по видам нагрузки, так и размерам блока передаваемых данных (8 Kбайт и 1 Mбайт). Измерения последовательно проводились для двух конфигураций испытательного стенда: канал 100 Мбит/c с шифрованием и канал с той же пропускной способностью без шифрования.

Сравнение результатов тестов позволило сделать такой вывод: использование аппаратуры шифрования уменьшает пропускную способность канала на 2,46-4,32% при операциях чтения данных с диска и не более чем на 6,15% при операциях записи данных на диск. Таким образом, применение устройств канального шифрования SafeEnterprise SONET Encryptor OC3/OC12 незначительно уменьшает пропускную способность канала SDH (снижение производительности при шифровании по протоколу IPSec составляет, по разным оценкам, от 7 до 30%). Устройства шифрования компании SafeNet позволяют осуществлять криптографическую защиту передаваемых данных без изменения схемы IP-адресации и маршрутизации.

Заключение

Все перечисленные выше методы защиты и их комбинации могут обеспечивать безопасность информации лишь в рамках известных моделей НД.

При этом эффективность систем защиты определяется как открытием новых, так и совершенствованием технологий НСИ, использующих уже известные физические явления.

С течением времени противник может освоить новые методы перехвата, потребуется дополнять защиту, что не свойственно криптографическим методам защиты, которые рассчитываются на достаточно длительный срок.

В заключение следует отметить, что необходимость практического внедрения и эффективного использования защищенных ВОЛС в сетях связи является задачей сегодняшнего дня.

Список использованной литературы

1. Спирин А. А.. Введение в технику волоконно-оптических сетей.

http://www.citforum.ru/nets/optic/optic1.shtml

2
. Филатенков А.. Доказательства уязвимости ВОЛС.

http://www.osp.ru/nets/2008/09/5300705/

3
. Манько А., Каток В., Задорожний М.. Защита информации на волоконно-оптических линиях связи от несанкционированного доступа.

http://bezpeka.com/files/lib_ru/217_zaschinfvolopt.zip

4. Гришачев В.В., Кабашкин В.Н., Фролов А.Д.. Физические принципы формирования каналов утечки информации в ВОЛС.

http://it4business.ru/itsec/FizicheskiePrincipyFormirovanijaKanalovUtechkiInformaciiVVolokonnoOpticheskixLinijaxSvjazi

5. Убайдуллаев Р.Р.
Волоконно-оптические сети. М., Эко-Трендз, 2000.

6. Фриман Р.
Волоконно-оптические системы связи. М., Техносфера; 2004 г.

7. Иоргачев Д.В., Бондаренко О.В. Волоконно-оптические кабели и линии связи. М., 1998.

8.
Новиков Ю.В., Карпенко Д.Г. Волоконно-оптическая сеть. М, 1995.

9. Семенов А. Б. Волоконно-оптические подсистемы современных СКС. М, 1994.

10. Северин В.А. Средства защиты в сетях. Комплексная защита информации на предприятии. Учебник для вузов. М, 1999.

11. Запечников С.В., Милославская Н.Г., Толстой А.И., Ушаков Д.В. Информационная безопасность .

12. Домарев В. В. Защита информации и безопасность компьютерных систем 1999.

13. Ярочкин В. И. Информационная безопасность. Учебник для вузов. М, 2003.

Страницы: 1, 2