скачать рефераты

скачать рефераты

 
 
скачать рефераты скачать рефераты

Меню

Голография скачать рефераты

p align="center"> 4. Некоторые виды голограмм

1 Мультикомплексные голограммы

Мультикомплексной называют такую голограмму, на которой одновременно записано много изображений, либо раздельно записаны отдельные части одного изображения, либо единственное изображение записано несколько раз.

2 Пространственное мультиплексирование

При решении задачи хранения данных для записи многих голаграмм можно использовать единственную фотопластинку или какой-либо иной материал, причем каждая голограмма может независимо восстанавливать изображения записанных на ней данных. При этом голограммы могут образовывать решетку типа шахматного поля, а для считывания изображения с каждой голограммы лазерный луч сканирует по решетке.

Встречается и другой способ пространственного разделения голограммы, когда одна и та же объектная волна или волна от одного и того же объекта, но с разных ракурсов записывается на голограмме в виде полос. В первом случае полосковая голограмма просто повторно записывается много раз, так чтобы можно было восстановить изображение со всей голограммы. Второй случай имеет место при записи синтезированных голограмм для целей отображения информации.

3 Составные изображения

Под составными голограммами мы имеем в виду голограммы, которые формируют изображения, состоящие из отдельных частей каждая из которых была записана самостоятельно

4 Голограммы, записанные с помощью сканирующего источника света

Голограммы, записанные с помощью сканирующего источника-- это такие голограммы, при регистрации которых использован; либо сканирующий пучок света для освещения объекта, либо сканирующий опорный пучок для освещения голограммы.

Сканирующий объектный пучок,

Иногда сечение освещающего объект пучка уменьшается в такой степени, что он не может больше освещать весь объект одновремено, а должен сканировать по объекту. В результате формируется многоэкспозиционная голограмма, в которой изображение каждго из освещаемых пучком участков объекта регистрируется отдельно.

Если размеры объекта велики, можно сузить освещающий объект пучок и заставить его сканировать по объекту, так чтобы на голограмму падала объектная волна большей яркости. Это позволит уменьшить время экспозиции, необходимое для записи голограммы рассматриваемой части объекта. Полную экспозицию уменьшить нельзя.

Недостатком использования голографической системы со сканированием помимо необходимости использовать более сложное оборудование является также уменьшение дифракционной эффективности голограммы. Это уменьшение связано с увеличением: фоновой экспозиции, которая возникает при записи с многократной экспозицией.

5 Сканирующий опорный пучок

В случае сканирования опорным пучком объект освещается целиком, но при этом опорный пучок сканирует по голограмме. Следовательно, можно увеличить полную интенсивность света, падающего на часть голограммы, и уменьшить время экспозиции для части голограммы. Это позволяет голографировать объекты, имеющие движение в ограниченных пределах. Однако такой мет приводит к уменьшению дифракционной эффективности, что объясняется увеличением энергии опорного пучка по отношению к объектному

6 Цветные голограммы

Цветными называют голограммы, способные воспроизводить цветные изображения. В сущности, цветные голограммы -- это мультиплексные голограммы, восстанавливающие перекрывающиеся изображения, каждое в своем цвете. Как и в случае мультиплексных голограмм, возникают различные проблемы в зависимости от того используются ли тонкие, т. е. поверхностные, голограммы или регистрирующая среда имеет заметную толщину. Голограммы, записанные на тонком материале, восстанавливают многократно повторяющиеся изображения, которые соответствуют многим дифракционным порядкам. Голограммы, записанные в толстой среде из-за усадки или набухания эмульсии могут не восстанавливаться освещением с исходной длиной волны. Если, например, рассматривать красные и белые изображения, то в противоположность черным и белым необходимо учитывать эффекты дисперсии. В случае голограммы сфокусированного изображения, поскольку расстояние между голограммой и телеграфируемым изображением; оказывается более коротким, таких проблем возникает меньше.

7 Голограммы, восстанавливаемые в белом свете

Голограмма представляет собой закодированную дифракционную решетку.

Следовательно, когда голограмма освещается белым светом, волны с большими длинами волн отклоняются сильнее от оси освещающей голограмму волны, чем волны с более короткими длинами волн. В результате этого восстановленное изображение; смазывается. Такой эффект можно отчасти скомпенсировать, используя дифракционную решетку с шагом штриха, равным среднему периоду интерференционных полос на голограмме. Изложенные выше соображения применимы к тонким голограммам. Объемные голограммы обладают избирательностью по отношению к длине волны и будут отражать или пропускать только узкую полосу длин волн, обусловленную эффектом Брэгга.

5. Трехмерная фотография

Голограммы могут регистрировать излучение, рассеянное объектом. На рисунке показаны схемы регистрации голограмм с углом охвата 360°. Однако можно регистрировать голограмму с таким охватом и при обычном (не всестороннем) освещении. Для этого необходимо сделать много экспозиций, поворачивая каждый раз объект на небольшой угол и засвечивая при каждой экспозиции узкую вертикальную полоску голограммы. 

Трехмерные свойства восстановленных с помощью голограмм изображений могут быть использованы в рекламе, лекционных демонстрациях, при конструировании художественных панорам, создании копий произведений искусств, регистрации голографических портретов. При получении голографического портрета человека необходимы столь краткие выдержки, чтобы структура голограммы не была размыта вследствие смещений освещенной поверхности. Это требует повышения мощности лазера, используемого для получения голограммы. При этом, однако, не следует забывать о предельно допустимой концентрации энергии на поверхности сетчатки человеческого глаза. Выход из положения заключается в освещении лица с помощью рассеивающих экранов большой площади. 

6. Применение голографии в технологии и оптотехнике

В ряде технологических процессов можно использовать образуемые голограммами действительные изображения. При просвечивании голограмм мощным лазером можно наносить на обрабатываемые поверхности сложные узоры. В частности, голограммы уже применялись для бесконтактного нанесения микроэлектронных схем. Основные преимущества голографических методов перед обычными - контактными или проекционными - достижение практически безаберрационного изображения на большом поле. Предел разрешения голограммы может достигать долей длины световой волны. На изображение практически не влияют пылинки, осевшие на голограмму, царапины и другие дефекты, в то время как для контактных или проекционных фотошаблонов это приводит к браку.

Другое применение голограммы в технологии - использование ее в качестве линзы. Фокусирующие свойства зонных решеток известны давно. Однако применение решеток ограничивалось трудностями их изготовления. Голографические зонные решетки - голограммы точечного источника - просты в изготовлении и несомненно будут полезны в лазерной технологии. Например, с помощью голографических линз получали отверстия диаметром до 14 мкм в танталовой пленке, нанесенной на стекло. Голографические решетки совсем не имеют ошибок, свойственных обычным решеткам, нарезанным на делительной машине. 

7. Неоптическая голография

С помощью голографии успешно решается проблема визуализации акустических полей. Это имеет большое прикладное значение. Возможные применения звуковой голографии - дефектоскопия, изучение рельефа морского дня, звуколокация, звуконавигация, поиск полезных ископаемых, исследование структуры земной коры и т.д.

Особое значение имеет ультразвуковая голография для медицинской диагностики.

Регистрация звуковых голограмм производится таким образом, чтобы запись допускала оптическое восстановление. Для этого используются следующие методы:

1. Сканирование звукового поля

Сигнал от приемника ультразвука (микрофона, пьезоэлемента и т.д.) модулирует световой поток, образующий оптическую голограмму. Возможны различные модификации такой схемы. На рисунке изображен вариант такой схемы, в которой сигнал сканирующего приемника управляет яркостью укрепленной на нем точечной лампочки. В других схемах сигнал с приемника подается на электроннолучевую трубку. Развертка производится синхронно с перемещением датчика, и голограмма фотографируется с экрана трубки. Возможны как однолучевые, так и двулучевые варианты звуковой голографии. Впрочем, роль опорного звукового луча может играть электрический сигнал с генератора звука, добавляемый к сигналу датчика.

2. Фотография

Ультразвуковое полк можно непосредственно зарегистрировать на фотопластинку, используя то обстоятельство, что ультразвук интенсифицирует химические реакции, происходящие при проявлении или фиксации фотослоя. Предварительно равномерно засвеченная, но не проявленная фотопластинка помещалась в ванну со слабым раствором гипосульфита. В ней создавалось ультразвуковое поле, и в пучностях звуковых волн происходило быстрое растворение галоидного серебра. После 20-30 секундного «озвучивания» пластинка проявлялась на свету. Полученная таким образом звукоголограмма восстанавливала изображение в световом пучке. Точно так же можно экспонировать фотопластинку ультразвуком в слабом проявляющем растворе. Пластинка должна быть предварительно засвечена. Проявление в пучностях звуковых волн идет намного быстрее, чем в узлах.

3. Деформация поверхности жидкости под действием звукового давления

Этот способ обладает тем преимуществом, что позволяет производить оптическое восстановление полученной отражательной голограммы одновременно с ее образованием и наблюдать, таким образом, за процессом в реальном времени. Поверхность жидкости покрывалась термопластической пленкой, которая деформировалась ультразвуковой волной, затем охлаждалась и использовалась в дальнейшем как фазовая оптическая голограмма.

4. Объемная голограмма

В качестве объемной голограммы можно использовать саму ультразвуковую волну в жидкости, бегущую или стоячую. Уплотнения и разрежения жидкости сопровождаются изменениями ее показателя преломления. Таким образом, звуковая волна представляет собой трехмерную фазовую голограмму. В результате на такой голограмме можно получить в реальном времени световую копию ультразвуковой волны.

8. Виды применения голографии

1. Голографическое хранение данных

Идея голографических носителей заключается в записи информации с помощью лазерного луча на трехмерную подложку, вместо нескольких гигабайт, такая среда могла потенциально сохранять терабайты данных на носителе не больший чем компакт-диск. Голографические данные могут считываться на очень высоких скоростях.

На первых стадиях разработки главной проблемой было создание пространственных модуляторов света (spatial light modulator). В настоящее время технология этих устройств в достаточной степени отработана, а наиболее сложной задачей стал подбор вещества-носителя информации. В январе 2001 года компания Lucent сообщила о создании носителя, способного выдержать до 1000 циклов перезаписи без ущерба сохранности данных и скорости доступа к ним. Внешне носитель напоминает прозрачный компакт-диск. По данным Imation первые голографические диски смогут хранить около 125 Гб информации, а скорость передачи данных составит до 30 Мб/с.

2. Изобразительная голография

Технология получения изобразительных голограмм, восстанавливаемых в белом свете, разработана в середине 60-х годов, однако до настоящего времени голография по масштабам распространенности и объемам производства не приблизилась к традиционной фотографии (за исключением тисненных радужных голограмм). Это обусловлено целым рядом технических сложностей, присущих современной технологии съемки и тиражирования изобразительных голограмм. В частности, в настоящее время при записи мастер-голограмм в подавляющем большинстве случаев используются лазеры непрерывного излучения, что накладывает жесткие ограничения на условия съемки (необходимость повышенной виброизоляции, стабильность температуры и других параметров окружающей среды). Указанные сложности многократно возрастают при увеличении формата голограмм. Поэтому отражательные голограммы, особенно большого формата, до сих пор остаются уникальными изделиями и изготавливаются лишь в условиях специализированных лабораторий при участии специалистов высшей квалификации. 

Кроме того, при использовании лазеров непрерывного излучения оказывается принципиально невозможной голографическая съемка живых объектов, например, портретов человека. Для съемки мастер-голограмм живых объектов в настоящее время используются импульсные лазеры на рубине или неодимовом стекле с последующим интерференционным копированием. Однако монохроматичность таких голографических изображений при полной реалистичности деталей делает их "неживыми", "замороженными", что зачастую производит отталкивающее впечатление.

При копировании таких голограмм с помощью лазеров непрерывного излучения возникают искажения масштаба, связанные с разницей длин волн лазеров, используемых при съемке оригиналов и их копировании.

3. Криминалистическая голография

Голографические методы обработки информации, использующие интерференционную систему записи исходных данных, привлекают в настоящее время большое внимание, что связано с возможностью их использования для создания голографических запоминающих устройств большой емкости, кодировании информации, распознавания и сравнения изображений объектов и других задач. Возможность записи информации о различных объектах на один и тот же участок поверхности голограммы, а также во всем ее объеме позволяет обеспечить высокую плотность записи. Это открывает пути для создания компактных, в том числе и переносимых запоминающих устройств, причем виды записи могут быть самые разнообразные (графические, буквенные, цифровые, предметные и т.п.). Возможность голографического кодирования информации может быть широко использована в криминалистике. Например, как средство, устраняющее возможность подделки документов, или как средство технической гарантии, препятствующее фальсификации объектов. Голографическое кодирование осуществляется с помощью специальных масок, которые в процессе фиксации интерференционной картины создают сложную форму волнового фронта. Для восстановления записанной таким образом информации об объекте необходимо иметь точную копию использованной при записи маски, форма которой может быть самой разнообразной, вследствие чего подобрать ей подобную практически невозможно. Голографические методы могут быть использованы в криминалистике и как средства исследования. Они могут быть использованы при исследовании рельефа (в том числе и микрорельефа) поверхности объекта; для измерения поверхности объекта любой формы; изучения кратковременных явлений; сравнительных исследований и при решении ряда других задач криминалистических исследований.

Задачу сравнения объекта с большим количеством ему подобных, более эффективно можно решать с помощью голографического метода оптической согласованной фильтрации. Области применения названного метода могут быть самыми разнообразными: для кодирования информации, улучшения качества фотографического изображения, создания запоминающих устройств большой емкости, распознавания и сравнения изображений объектов, оперативного поиска информации в большом массиве. Проведенные экспериментальные исследования принципиально доказали возможность использования голографического метода для сравнительного исследования фотопортретов в целях идентификации личности, сравнение следов папиллярных узоров рук. Рассматриваемый метод применим для сравнения оттисков печатных форм и машинописных текстов, исполненных на новых аппаратах, не имеющих видимых дефектов шрифта.

Страницы: 1, 2, 3