скачать рефераты

скачать рефераты

 
 
скачать рефераты скачать рефераты

Меню

Фотоприемники на основе твердого раствора кадмий-ртуть-телур (КРТ) скачать рефераты

b>Прямозонные и непрямозонные полупроводники и их фотопроводимость

Прямозонные полупроводники, такие как арсенид галлия, начинают сильно поглощать свет, когда энергия кванта превышает ширину запрещённой зоны. Такие полупроводники очень удобны для использования в оптоэлектронике. Эти полупроводниковые материалы имеют прямую запрещенную зону, как показано на рис. 4.б. В данном случае электроны валентной и зон проводимости имеют близкие импульсы, потому высока вероятность прямых излучательных переходов и, следовательно, высока внутренняя квантовая эффективность.

Непрямозонные полупроводники, например, кремний, поглощают в области частот света с энергией кванта чуть больше ширины запрещённой зоны значительно слабее, только благодаря непрямым переходам, интенсивность которых зависит от присутствия фононов, и следовательно, от температуры. Граничная частота прямых переходов кремния больше 3 эВ, то есть лежит в ультрафиолетовой области спектра.

Известно, что Si, Ge - непрямозонные полупроводники. Это означает, что электрон, находящийся вблизи дна зоны проводимости, имеет импульс, отличающийся от импульса электрона, находящегося вблизи потолка валентной зоны. Это определение иллюстрирует рис. 4.а, из которого видно, что в данном случае зона-зонный переход возможен только при условии компенсации импульсов электронов.

Рис. 4 Схемы рекомбинации

а) в непрямозонном п/п, б) в прямозонном п/п\\

Она может происходить, если при рекомбинации излучается фотон высокой энергии, при этом происходит компенсация импульсов и генерируется фонон. Ещё более трудно выполнимым оказывается условие одновременности этих двух процессов, что приводит к снижению вероятности именно такого рекомбинационного перехода. Таким образом, в непрямозонных полупроводниках преобладают безызлучательные переходы, поэтому внутренняя квантовая эффективность мала.

Полная проводимость полупроводника определяется равновесными носителями заряда n0, /p0 и фотоносителями и равна:

= e[)].

Так как темновая проводимость , то фотопроводимость полупроводника, обусловленная непосредственным действием излучения, есть

Отношение фотопроводимости уф к интенсивности света определяет удельную фоточувствительность полупроводника

Sф=ф/l.

1.3 Преимущества КРТ

За годы развития HgCdTe уменьшился спрос на примесные кремниевые приемники и приемники на соединениях PbSnTe, но, несмотря на это, в настоящее время у HgCdTe много больше конкурентов, чем когда-либо прежде. К ним относятся кремниевые диоды с барьером Шоттки, гетеропереходы SiGe, структуры с множеством квантовых ям на основе AlGaAs, сверхрешетки на основе напряженных слоев GalnSb, высокотемпературные сверхпроводники, а также два типа тепловых детекторов: пироэлектрические детекторы и кремниевые болометры. Однако ни один из вышеперечисленных детекторов не может конкурировать с HgCdTe по фундаментальным свойствам. Они могут быть более технологичными, но никогда не смогут обеспечить более высокие рабочие характеристики или, за исключением тепловых детекторов, функционировать при более высоких или даже сравнимых температурах.

Особые преимущества HgCdTe - прямая запрещенная зона, возможность получать как низкую, так и высокую концентрацию носителей заряда, высокую подвижность электронов и низкую диэлектрическую постоянную. Чрезвычайно малое изменение периода кристаллической решетки с изменением состава позволяет выращивать высококачественные многослойные структуры и структуры со ступенчатой шириной запрещенной зоны. HgCdTe может использоваться для детекторов, работающих в различных режимах, а также может быть оптимизирован для использования в диапазоне температур от жидкого гелия до комнатной в чрезвычайно широком диапазоне ИК-спектра (1-30 мкм).

Такой широкий диапазон длин волн дает и широкие области применения:

Применение ИК фотоприемников.

Тепловизионная техника, основанная на применении фотоприемников инфракрасного (ИК)
диапазона используется в различных областях народного хозяйства:

§ - химическая промышленность;

§ - металлургия черных и цветных металлов;

§ - медицина (ранняя диагностика раковых опухолей и других заболеваний);

§ - геология (поиск нефтегазовый, рудных и нерудных месторождений и геотермальных вод);

§ - городское хозяйство (используют для обнаружения скрытых утечек тепла, горячей и холодной воды в теплотрассах и водопроводной сети, обнаружение карстовых полостей в районах массовой застройки, обнаружение нарушения изоляции электропроводки);

§ - сельское хозяйство (контроль увлажнения и иссушения почв, состояние посевов с/х культур, выявление поражения вредителями и болезнями посевов и т.д.);

§ - лесное хозяйство (выявление массового поражения леса вредителями, обнаружение очагов лесных пожаров при значительном задымлении);

§ - экология (тепловые загрязнения рек и водоёмов, загрязнения воздушного бассейна выбросами электростанций и других промышленных предприятий, наблюдение за миграцией подземных вод - отходов металлургической и химической промышленности);

§ - контроль и диагностика чрезвычайных ситуаций;

§ - энергетика (дистанционный контроль предаварийных ситуаций крупных энергетических объектов).

- КРТ материал относится к собственным полупроводникам, поэтому чувствительность детекторов на его основе выше, чем чувствительность детекторов на основе примесных полупроводников.

- В этом материале время жизни носителей довольно мало, диэлектрическая постоянная невелика, поэтому быстродействие детекторов на основе КРТ высокое.

- Возможность варьировать ширину запрещенной зоны.

- Еще одно преимущество КРТ перед другими материалами заключается в возможности (и это подтверждено опытными разработками) изготавливать многоэлементные линейные и двумерные матрицы фотодетекторов, чувствительных в спектральном диапазоне 10-12 мкм при температуре 77К и в диапазоне 4-6 мкм при температуре 220К (-60 С).

Преимущества гетероэпитаксиальных структур КРТ по сравнению с объемными кристаллами КРТ.

-
Преимуществом структур является существенное упрощение технологии изготовления ИК фотоприемников. ГЭС (Гетероэпитаксиальные структуры) КРТ не уступают по свойствам объемным кристаллам КРТ, превосходят их по технологичности изготовления фотоприемников и пригодны для производства многоэлементных фотоприемников с параметрами, близкими к предельным.

- Этот материал может быть изготовлен с различной шириной запрещенной зоны, так что приборы на его основе могут регистрировать ИК-излучение в диапазоне 1.6 - 20 мкм.

1.4 HgCdTe: свойства и технология

С точки зрения фундаментальных свойств HgCdTe - очень привлекательный материал, он пользуется большим спросом в течение последних тридцати лет. HgCdTe - полупроводниковый твердый раствор со структурой цинковой обманки, чьи свойства меняются непрерывно с изменением состава х между фазами бинарных соединений. Для того чтобы дать полное описание свойств и сказать, как они изменяются с х, необходимо большое число экспериментальных данных. В отличие от сильной зависимости полупроводниковых свойств от состава, период кристаллической решетки CdTe только на 0.3% больше, чем период кристаллической решетки HgTe. Здесь представлены фундаментальные свойства материала, важные при создании ИК-детекторов, а также связанные с технологией.

Полупроводниковые свойства

Рабочие характеристики ИК-фотодетекторов определяются следующими основными свойствами используемого п
олупроводника: шириной запрещенной зоны, собственной концентрацией, подвижностями электронов и дырок, коэффициентом поглощения, скоростями тепловой генерации и рекомбинации. Табл. 1 содержит перечень основных параметров материала.

Зонная структура

Электрические и оптические свойства
Hg1-xCdxTe определяются структурой запрещенной зоны вблизи Г-точки зоны Бриллюэна. Формы электронной зоны и зоны легких дырок определяются шириной запрещенной зоны и матричным элементом импульса. Ширина запрещенной зоны этого соединения при температуре 4.2 К варьируется от -0,300 эВ для полуметаллического HgTe, проходит ноль при х = 0.15 и далее увеличивается до 1.648 эВ для CdTe.

Таблица 1. Физические свойства Hg1-xCdxTe (х = 0; 0.2; 1)

Свойства

Т, К.

HgTe

Hg0.8Cd0.2Te

CdTe

Постоянная решетки А, А

300

6.4614

6.4637

6.4809

Коэф. теплового расширения а, 10 -6 К.

300

4.2

4.1

4.1

Тепловая проводимость С, Вт/(см * К)

300

0.031

0.013

0.057

Плотность р, г/см3

300

8.076

7.630

5.846

Температура плавления Тm, К.

943

940 (тв.)

1050 (жид.)

1365

Ширина запрещенной зоны Eg, эВ

300

-0.1415

0.1546

1.4895

77

-0.2608

0.0830

1.6088

4.2

-0.2998

0.05960

1.6478

Эффективные массы: m* /m

77

0.029

0.0064

0.096

mh*/m

0.35-0.7

0.4-0.7

0.66

Подвижности, см2/(В * с): е

77

2.5 х105

4x104

h

7x102

3.8 х 104

Собственная концентрация ni, см-3

300

3.4 х 1016

77

9.9 х 1013

Статическая диэлектрическая постоянная h

300

20.8

17.8

10.5

Высокочастотная диэлектрическая постоянная x

300

15.1

13.0

7.2

Подвижности

Благодаря малым эффективным масса
м, значения подвижности электронов в HgCdTe являются высокими, в то время как подвижность тяжелой дырки - на два порядка ниже. Подвижность электронов определяется рядом механизмов рассеяния, включая рассеяние на ионизированных примесях и разупорядоченностях соединения, электрон - электронные и дырка - дырочные взаимодействия, рассеяние на акустических и полярных оптических фононах. Рассеяние на неполярных оптических фононах вносит значительный вклад в р-типе и полуметаллических материалах n-типа. Несмотря на то, что результаты расчета значений подвижности электронов в основном хорошо согласуются с экспериментом, все еще нет общего теоретического понимания подвижности дырки в HgCdTe.

Электронная подвижность в Hg1-xCdxTe (в см2/(В * с)) в диапазоне составов 0.2 < х < 0.6 и при температурах Т > 50 К может быть аппроксимирована как

е

Где г=(0.2/х)0,6, s = (0.2/x)7.5.

Используют следующую эмпирическую формулу подвижности е для слаболегированного материала n-типа:

е=9х104(me; T)-3/2. (13)

Эта формула может быть связана с формулой подвижности для рассеяния на ионизированной примеси при приблизительной оценке зависимостей е с изменением состава х и уровня легирования полупроводника при температуре >77 К. Предлагают эмпирическую формулу (действующую в диапазоне составов 0.18 < х < 0.25) для изменения подвижности е с изменением х при 300 К для самых высококачественных материалов:

е=104(8.754х-1.044)-1см2/(В*с). (14)

Значения подвижности дырок при комнатной температуре изменяются в диапазоне от 40 до 80 см2/(В * с), температурные зависимости относительно слабы. Дырочная подвижность при температуре 77 К на порядок выше, чем при комнатной температуре. При моделировании фотоприемников ИК-излучения обычно полагают, что дырочная подвижность вычисляется при предположении, что отношение подвижностей электрона и дырки b= me/mh постоянна и равна 100.

Оптические свойства

Оптические свойства
HgCdTe исследованы, главным образом, при значениях энергии порядка ширины запрещенной зоны. Коэффициент поглощения при оптической генерации носителей может быть рассчитан в рамках модели Кейна, включая сдвиг Мосса-Бурштейна. Легирование полупроводника примесью р-типа увеличивает поглощение благодаря снижению заполнения зоны.

До сих пор появляются значительные несоответствия между известными данными относительно значений коэффициента поглощения. Это вызвано различными концентрациями собственных дефектов и примесей, неравномерным составом и легированием, неоднородностью толщины образцов, механическими деформациями и различными способами обработки поверхности. В высококачественных образцах измеренное поглощение в коротковолновой области спектра находится в хорошем согласии с рассчитанным по модели Кейна, в то время как на длинноволновой границе появляется экспоненциальный хвост. Наличие хвостов зон увеличивается из-за собственных точечных дефектов, примесей и других нарушений в кристалле:

см-1, (15)

где Е выражено в электрон-вольтах, Т - в Кельвинах, Т0 = 81.9,

Е0 = -0.3424 + 1.838x + 0.148x2, =3.267 х 104(1 + х) и 0 = exp (53.61x - 18.88). Наилучшее согласие с моделью Кейна достигается в области Eg = E(= 500 см-1). Точка перехода между областью, описываемой моделью Кейна, и экспоненциальным хвостом при температуре 300 К находится при t = 100 + 5000x. Значительное поглощение HgCdTe ниже границ поглощения может быть связано с внутризонными переходами как в зоне проводимости, так и в валентной зоне, а также с переходами между подзонами валентной зоны.

Измерение поглощения является, возможно, наиболее общим стандартным методом для определения состава и его распределения в объемных кристаллах и эпитаксиальных слоях. Как правило, для толстых (>0.1 мм) образцов используется уровень поглощения 0.5 или 1% для верхней граничной длины волны, для более тонких образцов - различные методы.

Состав эпитаксиальных слоев обычно определяется из значения длины волны, соответствующей половине максимального пропускания 0.5Тmах. Определение состава может быть затруднено наличием градиента состава по толщине. Измерения коэффициента отражения в ультрафиолетовом и видимом спектрах также используются для определения состава, особенно для характеризации поверхностной области при глубине проникновения 10-30 нм.

Местонахождение ширины запрещенной зоны Eg обычно измеряется по положению максимума коэффициента отражения, а состав рассчитывается из экспериментального выражения

Страницы: 1, 2, 3, 4, 5