скачать рефераты

скачать рефераты

 
 
скачать рефераты скачать рефераты

Меню

Электрические датчики в современной металлургии скачать рефераты

Электрические датчики в современной металлургии

Курсовая работа

Тема: "Электрические датчики в современной металлургии"

Введение

Важнейшим фактором повышения эффективности прокатного производства в металлургической промышленности является развитие систем автоматического управления (САУ), как технологическим оборудованием, так и всем технологическим процессом в целом. Прокатное производство является сложным, консервативным процессом в металлургии, так как используется дорогостоящее технологическое оборудование, работающее в сложной агрессивной среде.

Современные прокатные клети, станы оснащаются передовыми технологиями первичного сбора, преобразования и использования технической и технологической информации для повышения производительности и качества выпускаемой продукции.

В зависимости от выполняемых функций элементы САУ можно разделить на три группы: источники первичной информации (датчики), промежуточные и исполнительные устройства.

В системах автоматического управления в качестве сигналов обычно используются электрические и механические величины (например, постоянный ток, напряжение, давление сжатого газа или жидкости, усилие и т.п.), так как они позволяют легко осуществлять преобразование, сравнение, передачу на расстояние и хранение информации. В одних случаях сигналы возникают непосредственно вследствие протекающих при управлении процессов (изменения тока, напряжения, температуры, давления, наличия механических перемещений и т.д.), в других случаях они вырабатываются чувствительными элементами или датчиками.

Соответственно операциям, производимым с сигналами информации в автоматических устройствах, можно выделить функциональные ячейки - элементы. Элемент это простейшая в функциональном отношении ячейка (устройство, схема), предназначенная для выполнения очень простой по сути дела одной операции с сигналом.

Несмотря на простоту понятия элемента и происходящих в нем процессов, до сих пор во многих случаях существуют трудности не только в формировании понятия элемента, но и в терминологии.

Часто элементы отождествляются с устройствами, в состав которых входят несколько элементов. Например, некоторые датчики, называемые элементами, в действительности являются совокупностью элементов, объединенных единой схемой соединения, обеспечивающих воспроизведение контролируемой величины и преобразование ее в другую величину, более удобную для передачи по линиям связи.

1. Основные понятия и характеристики датчиков

Первичные измерительные преобразователи (в дальнейшем будем называть их датчиками) - это устройства, предназначенные для получения первичной рабочей информации о состоянии объекта. Они преобразуют физическую величину, характеризующую состояние объекта, в величину другого вида более удобного для передачи и дальнейшего преобразования.

В зависимости от принципа производимого датчиком преобразования (преобразования входной величины в выходную) их подразделяют в основном на два типа: параметрические и генераторные.

Параметрические (пассивные) - это датчики, в которых изменение контролируемой величины х (рис. 1) сопровождается соответствующими изменениями активного, индуктивного и емкостного сопротивлений. Наличие постороннего источника энергии вида z (рис. 1, б) является обязательным условием работы параметрического датчика. Параметрические датчики обычно подключаются по схеме Уитстона [3], которая представлена на рис. 4.

Рис. 1. Схема Уитстона

Переменный элемент Х (переменное плечо мостовой схемы) под действием физической величины изменяет свой параметр и тем самым разбалансирует схему включения других элементов R (постоянные плечи мостовой схемы). Схема питается от дополнительного источника энергии Г (например, генератора).

Генераторные (или активные) - это датчики, в которых изменение контролируемой величины х сопровождается соответствующими изменениями электродвижущей силы (ЭДС) на выходе датчика (например, возникновение ЭДС может происходить вследствие термо-, пьезо-, фотоэффекта и других явлений, вызывающих появление электрических зарядов). Эти датчики выполняются по схеме, приведенной на рис. 1, а, т.е. они не требуют дополнительного источника энергии вида z, так как энергия на выходе элемента полностью берется с его входа (вследствие чего мощность выходного сигнала всегда меньше мощности входного сигнала).

В зависимости от вида контролируемой неэлектрической величины различают датчики механические, тепловые, оптические и др. Часто применяются электрические датчики с промежуточным преобразованием, т.е. механический датчик объединяют с электрическим. Преобразование контролируемой величины в таких датчиках происходит по схеме: измеряемая величина - механическое перемещение - электрическая величина. Элемент, преобразующий измеряемую величину в перемещение, называется первичным преобразователем или источником первичной информации (ИПИ). Например, давление преобразуется в перемещение стрелки манометра ПИ, которое затем преобразуется в изменение активного сопротивления (проволочный, резистивный (или реостатный) датчики и др.).

Наиболее целостно о разнообразии ИПИ отражено в её классификации.

2. Классификация источников первичной информации

В настоящее время существует множество разнообразных по принципу действия и назначению ИПИ. Непрерывное развитие науки, техники и технологии приводит к появлению все новых источников первичной информации. Разобраться в этом многообразии помогают различные классификации. Создать универсальную классификацию, удовлетворяющую запросам всех возможных пользователей конкретной предметной области, - задача практически неразрешимая [1].

В качестве классификационных признаков ИПИ можно принять многие характеристики преобразователей: по виду используемой энергии, по виду входной и выходной величин, по принципу действия, по конструктивному исполнению, по типу переменных объекта управления и т.д.

Классификация:

1. По виду используемой энергии ИПИ можно подразделить на электрические, механические, пневматические и гидравлические.

2. По соотношению между входной и выходной величинами бывают различные виды ИПИ, например, электрический вход - неэлектрический выход; электрический вход - гидравлический выход и т.п.

3. В зависимости от вида выходного сигнала различают ИПИ аналоговые, дискретные, релейные, с естественным или унифицированным выходным сигналом.

4. По виду структурной схемы различают преобразователи прямого однократного преобразования, последовательного прямого преобразования, дифференциальные, с обратной связью (компенсационная схема).

5. По характеру преобразования входной величины в выходную ИПИ подразделяются на параметрические, генераторные, частотные, фазовые.

6. По виду измеряемой физической величины различают ИПИ линейных и угловых перемещений.

По физическим явлениям, положенным в основу принципа действия, в ГСП принята следующая классификация ИПИ:

- механические - с упругим чувствительным элементом, дроссельные, ротаметрические, объемные, поплавковые, скоростные;

- электромеханические - тензорезистивные, термоэлектрические, термомеханические, термокондуктометрические, манометрические;

- электрохимические - кондуктометрические, потенциометрические, полярографические;

- оптические - фотоколометрические, рефракторометрические, оптико-акустические, нефелометрические;

- электронные и ионизационные, индукционные, хроматогра-фические, радиоизотопные, магнитные.

- по типу переменных объекта управления (часто используется в прокатном производстве) - датчики технологических переменных (температура, толщина проката и др.) и устройств управления (положением валков, скоростью вращения валков и др.)

3. Датчики измерения технологических переменных

Из всего многообразия источников измерения первичной информации, в металлургии, датчики измерения технологических переменных занимают особое место. Дело заключается в том, что информация о параметрах проката, сорта, одним словом, заготовки представляет особый интерес. Эта информация необходима как для проведения технологического процесса изготовления заготовки или конечного продукта, так и для управления структур металлургического предприятия. Одним словом она необходима в современных информационных технологиях, которая применяется, как в АСУ ТП, так и в АСУ П.

3.1 Измерение усилий прокатки

Измерение усилия прокатки производится обычно прямым методом, однако иногда используется и косвенный метод.

При прямом методе датчик, преобразующий усилие в электрический сигнал, стремятся сконструировать таким образом, чтобы вся измеряемая сила замыкалась на датчик, т.е. датчик деформировался бы под действием полной силы.

На рис. 2 приведены схемы установки датчиков усилия прокатки в четырехвалковой клети. При прямом методе усилие прокатки измеряют датчиками 1, установленными над гайкой нажимного винта, датчиками 2, установленными между торцом нажимного винта и подушкой верхнего опорного валка, и датчиками 3, установленными между станиной и подушкой нижнего опорного валка. Усилие прокатки косвенным методом измеряют при помощи тензометра 4.

Погрешность датчиков, установленных над верхней - 2 (Рис. 2), и под нижней - 3 опорными подушками валка, существенно меньше, чем при установке их над гайкой нажимного винта - 1. Однако при установке датчика под подушкой нижнего опорного валка не удается получить достаточной равномерности распределения нагрузки по его рабочей поверхности. Обычно предпочитают устанавливать датчик над верхней опорной подушкой.

Способы преобразования деформации в электрический сигнал можно разделить на две основные группы.

К первой группе относятся способы, основанные на измерении деформации какой-либо базовой длины нагружаемого элемента под действием измеряемой силы. Для этого на поверхности этого элемента закрепляют тем или иным способом преобразователи деформации в электрический сигнал.

Ко второй группе относятся способы, основанные на изменении каких-либо свойств нагружаемого элемента. К этой группе относятся все типы магнитоупругих преобразователей, в которых под действием механических напряжений происходит изменение магнитных свойств, а также полупроводниковые и тензорезисторные преобразователи, если они непосредственно воспринимают нагрузку, а не деформацию какого-то узла. В настоящее время в прокатном производстве нашли место прецизионные датчики усилия, которые используют такие физические явления, как магнитострикция, прямой и обратный пьезоэффект и др.

Датчики усилия на тензометрическом преобразователе. В основе работы тензометрических датчиков (тензорезисторов) лежит тензоэффект, заключающийся в изменении активного сопротивления проводниковых или полупроводниковых материалов при их механической деформации.

Характеристикой тензоэффекта материала служит коэффициент тензочувствителъности S, определяемый как отношение изменения сопротивления к изменению длины проводника:

,

где ; - приращение сопротивления при изменении длины l на ; Е - модуль упругости материала; - механическое напряжение.

Изменение сопротивления составляет

,

где - относительное удлинение тензорезистора;

R - начальное сопротивление тензорезистора.

Для высокоомных проводников, например, коэффициент тензочувствительности считается постоянным и равен S = 1,9…2,9 [3].

Для обеспечения длительной работы без разрушения относительные деформации упругого элемента не должны превышать одной - двух тысячных, при которых измерение сопротивления составляет 0,1…0,2%. Точное измерение таких величин является сложной задачей. Такой датчик относится к параметрическим датчикам и поэтому наиболее распространена мостовая схема измерения (рис. 1).

Измерители усилия прокатки с упругими цилиндрическими элементами с тензорезисторными преобразователями изготавливает английская фирма, «Davy Instruments». Эти датчики имеют относительно большую высоту, что зачастую препятствует их применению. Для упругого цилиндрического элемента погрешность, связанная с изменением распределения нагрузки на его рабочей поверхности при работе на стане, укладывается в приемлемые рамки, если отношение высоты цилиндра к его диаметру не меньше двух. При неравномерном нагружении рабочей поверхности боковые поверхности цилиндра и его центр деформируются неодинаково: в одном случае более загруженным может быть центр, а в другом - периферия.

Для уменьшения погрешности, связанной с изменением характера распределения удельных нагрузок, канадская фирма «Kelk» применяет распределение тензорезисторных преобразователей по поперечному сечению цилиндра.

Подобного распределения можно добиться, если изготавливать упругий элемент в виде кольца и наклеивать тензорезисторы на его внешних и внутренних поверхностях. Измерители усилия с упругими элементами в форме кольца изготавливает ВНИИметмаш.

Датчики ВНИИметмаша серии М выпускаются на усилия 0,1…20 МН.

В качестве тензорезистивного материала можно использовать сплавы с малым температурным коэффициентом сопротивления (ТКС) (манганин, константан, нихром, никелин), платиносеребрянные и платиновольфрамовые полупроводниковые материалы (германий, кремний). Наиболее распространены тензорезисторы, выполненные из металла. Они разделяются на проволочные и фольговые.

Проволочные тензорезисторы выполняют из проволоки диаметром 0,002…0,05 мм, которую укладывают частыми петлями на тонкую бумагу или лаковую пленку и приклеивают к ней (рис. 4, а). К концам проволоки припаивают или приваривают медные выводы. Сверху преобразователь покрывают лаком. Материал для пленки выбирают в зависимости от условий эксплуатации. Резисторы на пленке из клея БФ-2 работают в диапазоне температур от -40 до 70 °С, а на бакелитовом лаке - до 200 °С. Для более высоких температур используют специальные высокотемпературные клеи или цементы.

Рис. 4. Проволочные (а) и фольговые(б) тензорезисторы

Наиболее часто используют преобразователи с базой (длиной петель) 5…20 мм, обладающие сопротивлением 30…500 Ом. Их номинальный рабочий ток, определяемый условиями отвода выделяемых в них потерь энергии, находится в пределах десятков миллиампер. Максимально допустимые относительные деформации не превышают 0,3%.

Фольговые преобразователи (рис. 4, б) более совершенны, чем проволочные. Они имеют решетку из тонкой фольги прямоугольного сечения толщиной 4…12 мкм. Благодаря большей площади контакта полосок фольгового тензорезистора с объектом измерения его теплоотдача значительно выше, чем у проволочного, что позволяет увеличить ток до 0,5 А, и тем самым повысить чувствительность тензопреобразователя.

Полупроводниковые тензорезисторы имеют ряд существенных преимуществ: их чувствительность в 50…60 раз превышает чувствительность проволочных, размеры их существенно малы, а уровень выходного сигнала позволяет использовать его без дополнительных дорогостоящих усилителей. Основным их отличием от проволочных является их большое (до 50%) изменение сопротивления чувствительного элемента при деформации.

Поскольку изменение сопротивления тензорезисторов, вызванное деформацией, весьма мало и колеблется от единиц миллиом до нескольких десятых долей ома, то для измерений применяют высокочувствительные потенциометрические и мостовые схемы (рис. 1). Чтобы повысить чувствительность тензорезисторов, их можно включать в два и даже четыре плеча мостовой схемы. Датчики усилия на тензометрическом преобразователе имеют достоинства и недостатки.

Страницы: 1, 2, 3, 4