скачать рефераты

скачать рефераты

 
 
скачать рефераты скачать рефераты

Меню

Цифровые интегральные микросхемы скачать рефераты

Цифровые интегральные микросхемы

116

25

ВВЕДЕНИЕ

Основные понятия и определения

В настоящее время цифровая электроника базируется на достижениях микроэлектроники, для которой характерно органическое единство физических, конструкторско-технических и схемотехнических аспектов. Микроэлектроника охватывает вопросы исследования, разработки и принципов применения интегральных микросхем.

Интегральная микросхема (ИС) - это совокупность электрически связанных компонентов (транзисторов, диодов, резисторов и др.), изготовленных в едином технологическом цикле на единой полупроводниковой основе (подложке).

Интегральная микросхема выполняет определенные функции обработки (преобразования) информации, заданной в виде электрических сигналов: напряжений или токов. Электрические сигналы могут представлять информацию в непрерывной (аналоговой), дискретной и цифровой форме.

Аналоговые и дискретные сигналы обрабатываются аналоговыми или линейными микросхемами, цифровые сигналы - цифровыми микросхемами. Существует целый класс устройств и соответственно микросхем называемых аналого-цифровыми или цифро-аналоговыми и, служащих для преобразования сигналов из одной формы в другую.

Аналоговый сигнал описывается непрерывной или кусочно-непрерывной функцией, причем и аргумент и сама функция могут принимать любые значения из некоторых интервалов. На рис. 1, а приведено графическое изображение гармонического сигнала

в качестве примера аналогового сигнала,

где , ,

Um = 1, , .

Рис. 1. Три формы представления сигналов

Дискретный сигнал - это форма представления непрерывного сигнала в виде решетчатой функции (временного ряда) (рис. 1, б), которая может принимать любые значения на некотором интервале а независимая переменная n принимает лишь дискретные значения (n = 0,1), где T - интервал дискретизации.

Как видно из приведенных диаграмм значения дискретного и аналогового сигналов в однозначных временных точках абсолютно совпадают.

Цифровой сигнал - квантованный временной ряд

,

графически представленный на рис. 1, в, принимающий лишь ряд дискретных значений - уровней квантования, а независимая переменная n принимает значения 0, 1, Нелинейная функция Qк - задает значения уровней квантования в двоичном коде. Число K уровней квантования и число S разрядов соответствующих кодов связаны зависимостью

.

Функциональная сложность интегральных схем

Компоненты, входящие в состав ИС, не могут быть выделены из нее в качестве самостоятельных изделий, кроме того, они характеризуются некоторыми особенностями по сравнению с дискретными транзисторами, диодами и т. д.

Особенностью цифровых ИС является высокая сложность выполняемых ими функций, поэтому количество компонентов в одной микросхеме может исчисляться сотнями тысяч и даже миллионами.

Функциональную сложность ИС обычно характеризуют степенью компонентной интеграции, т. е. количеством чаще всего транзисторов на кристалле. Количественно степень интеграции описывается условным коэффициентом K = lg N , где N - число компонентов.

В зависимости от значений K интегральные схемы подразделяются:

K 1…2, (N 100) - малая интегральная схема (МИС или IS);

2 K 3…4, (N 10000) - интегральная схема средней степени интеграции (СИС или MSI);

3…4 K < 5, (N < 105) - большая интегральная схема (БИС или LSI);

K 5, (N 105) - сверхбольшая интегральная схема (СБИС или

VLSI).

Сокращения приведенные на английском языке имеют следующий смысл: IS - Integrated Circuit; MSI - Medium Scale Integration; LSI - Large Scale Integration; VLSI - Very Large Scale Integration.

Иногда сложность ИС характеризуют таким показателем, как плотность упаковки. Это количество компонентов, приходящихся на единицу площади кристалла. Этот показатель характеризует уровень технологии, и в настоящее время он составляет 1000 компонентов/мм2.

Особенности технологии и производства ИС

При изготовлении интегральных схем используется групповой метод производства и в основном планарная технология.

Групповой метод производства предполагает изготовление на одной полупроводниковой пластине большого количества однотипных ИС и одновременную обработку десятков таких пластин. После завершения цикла изготовления пластины разрезаются в двух взаимно перпендикулярных направлениях на отдельные кристаллы - чипы (chip), каждый из которых представляет собой ИС.

Планарная (плоскостная) технология - это такая организация технологического процесса, при которой все составляющие ИС формируются в одной плоскости.

Необходимо отметить, что создание и освоение изделий микроэлектроники является чрезвычайно дорогостоящим делом.

Стоимость D одной ИС (одного кристалла) упрощенно можно вычислить следующим образом:

,

где A - затраты на НИР и ОКР по созданию ИС; B - затраты на технологическое оборудование; С - текущие расходы на материалы, электроэнергию, заработную плату в пересчете на одну пластину; Z - количество пластин, изготавливаемых до амортизации основных производственных фондов; X - количество кристаллов на пластине; Y - отношение годных ИС к количеству, запущенных в производство.

Увеличение Y достигается совершенствованием технологии, а рост числа кристаллов X достигается увеличением размера пластины и уменьшением размеров элементов ИС.

Полупроводниковые интегральные схемы

Классификация ИС может производиться по различным признакам. Однако по способу производства современные микросхемы можно разделить на полупроводниковые, пленочные, гибридные. Основу современной цифровой электроники составляют полупроводниковые интегральные схемы.

Широкое распространение получили следующие полупроводниковые ИС:

биполярные;

МДП (МОП) - металл-диэлектрик (окисел)-полупроводник;

БиМОП - сочетание двух первых типов.

Технология полупроводниковых ИС основана на легировании полупроводниковой (кремниевой) пластины поочередно донорными и акцепторными примесями, в результате чего под поверхностью образуются тонкие слои с разным типом проводимости и p-n-переходы на границах слоев. Отдельные слои используются в качестве резисторов, а p-n-переходы - в диодных и транзисторных структурах.

Легирование осуществляется локально с помощью специальных масок с отверстиями, через которые атомы примеси проникают в пластину на нужных участках. Роль маски обычно играет пленка двуокиси кремния SiO2, покрывающая поверхность кремниевой пластины. В этой пленке различными методами формируются окна необходимой формы.

Основным элементом биполярных ИС является n-p-n-транзистор (биполярный транзистор), и на его изготовление ориентируется весь технологический цикл. Все другие элементы, по возможности, изготавливаются с этим транзистором, без дополнительных технологических операций.

Основным элементом МДП (МОП) ИС является МДП (МОП)-транзистор.

Элементы биполярной ИС необходимо изолировать друг от друга, чтобы они не взаимодействовали через кристалл. Элементы МДП (МОП) ИС не нуждаются в специальной изоляции друг от друга. В этом одно из главных преимуществ МОП ИС по сравнению с биполярными.

В последнее время широкое распространение в качестве материала подложки получил арсенид-галлий. В полупроводниковых микросхемах на такой основе активными элементами служат полевые транзисторы с управляющим переходом металл-полупроводник (МЕП-транзисторы).

Размеры кристаллов у современных полупроводниковых ИС достигают 2020 мм2, а размеры фрагментов элементов ИС составляют десятые доли микрометра.

Исторические этапы микроэлектроники

Первый этап - изобретение точечного германиевого транзистора в 1948 году в лаборатории Bell Telephone Laboratories.

Второй этап - создание плоскостных кремниевых транзисторов в 1953 году на фирме Texas Instrument Incorporation и налаживание их группового производства.

Третий этап - создание первой интегральной схемы в 1961 году на фирме Fairchild Semiconductor, представляющей собой триггер, состоящий из четырех биполярных транзисторов и двух резисторов.

1. ОСНОВЫ ТЕОРИИ ИНТЕГРАЛЬНЫХ ЦИФРОВЫХ УСТРОЙСТВ

1.1 Логические основы цифровой интегральной электроники

Функционирование любой цифровой системы происходит в двоичной системе счисления, оперирующей только двумя цифрами: нуль (0) и единица (1). В данном случае имеется в виду логические нуль и единица.

Математический аппарат, на основе которого осуществляется описание цифровых схем, - это алгебра логики, или, как ее еще называют по имени автора - английского математика Джорджа Буля (1815-1864), булева алгебра. В практических целях первым применил ее американский ученый Клод Шеннон в 1938 году при исследовании электрических цепей с контактными выключателями.

Предметом рассмотрения алгебры логики является утверждение, которое может быть либо истинным, либо ложным. Принято «истинно» обозначать цифрой 1, «ложно» - цифрой 0.

Простые утверждения, объединенные логическими операциями, образуют сложные утверждения. Если простые утверждения обозначить буквами, например, A, B, C, …, а сложные буквой F, то, используя законы алгебры логики, можно описать математически сколь угодно сложную цифровую схему.

В алгебре логики известны три основные логические операции:

Логическое умножение (конъюнкция или операция И). Записывается как F = A B, F = A?B, F = AB, читается - A и B. Операция обозначает, что сложное высказывание истинно лишь тогда, когда истинны все простые высказывания.

Логическое сложение (дизъюнкция или операция ИЛИ). Записывается как F = AB, F = A+B, читается - F = A или B. Обозначает, что сложное высказывание истинно, если истинно хотя бы одно из простых высказываний, и тем более, если истинны оба.

Логическое отрицание (инверсия или операция НЕ). Записывается F = В , читается - F = «не» A. Операция обозначает, что сложное высказывание истинно, если простое ложно, и наоборот.

Словесное описание приведенных логических операций можно свести к их табличному (табл. 1) описанию или заданию:

Таблица 1

Аргументы

(простые высказывания)

Логические операции (булевы функции)

А

В

И

ИЛИ

НЕ

AB

AB

0

0

0

0

1

1

0

1

0

1

1

0

1

0

0

1

0

1

1

1

1

1

0

0

Таким образом, выполнение сколь угодно сложной логической операции может быть сведено к трем вышеперечисленным операциям. Следовательно, имея некоторые технические устройства, реализующие операции И, ИЛИ, НЕ, можно построить сколь угодно сложное цифровое устройство. Такие устройства называются соответственно логическими элементами И, ИЛИ, НЕ (рис. 2) и образуют основной базис или функционально полную систему логических элементов.

а б в

Рис. 2. Условное обозначение логических элементов на электрических схемах: И (а), ИЛИ (б), НЕ (в)

В интегральной цифровой электронике широко используются элементы других базисов: ИЛИ - НЕ (стрелка Пирса AvB), а также И - НЕ (штрих Шеффера A¦B), каждый из которых также является функционально полной системой элементов.

1.2 Кодирование сигналов в цифровых устройствах

По виду кодирования электрических сигналов двоичными цифрами элементы цифровой техники делятся на потенциальные, импульсные и импульсно-потенциальные.

В потенциальных элементах нулю и единице соответствуют два резко отличающихся уровня - высокий и низкий. При этом напряжения могут быть как положительными, так и отрицательными относительно корпуса, электрический потенциал которого принимается за нулевой.

Различают элементы, работающие в положительной и отрицательной логике (рис. 3).

Рис. 3. Кодирование электрических сигналов в потенциальных элементах

Таким образом, для положительной логики характерны более высокие значения напряжений, которые соответствуют логической единице.

У импульсных цифровых устройств логическими нулями и единицами кодируются перепады напряжений, наличие или отсутствие импульса, полярность импульса.

В цифровых схемах используются также импульсно-потенциальные элементы, в которых одна часть сигналов кодируется различными уровнями напряжения, а другая - перепадами напряжения.

1.3 Классификация цифровых устройств

В общем случае на вход цифрового устройства поступает множество двоичных переменных X(x1 … xn), а с выхода снимается множество двоичных переменных Y(y1 … yk),. Устройство при этом осуществляет определенную логическую функцию между входными и выходными переменными.

Цифровые устройства можно разделить на комбинационные и последовательностные.

В комбинационных - значения Y в течение каждого такта определяются только значениями X в этом же такте. Такие устройства состоят из логических элементов.

В последовательностных - значения Y определяются значениями X, как в течение рассматриваемого такта, так и существовавшими в ряде предыдущих тактов. Для этого в последовательностных устройствах, кроме логических должны быть еще и запоминающие элементы.

Структура последовательностного и комбинационного устройства приведена на рис. 4.

а б

Рис. 4. Структура комбинационного а и последовательностного б цифровых устройств

Запоминающее устройство может хранить информацию не бесконечно большого, а только ограниченного числа тактов, поэтому цифровые устройства с памятью называют конечными автоматами, к которым относят все ЭВМ.

Таблицы, показывающие взаимосвязь между входными и выходными переменными комбинационных устройств, называют таблицами истинности. Алгебраическая форма этих связей представляет систему уравнений

y1 = y1 (x1 , x2 , …, xn),

yk = yk (x1 , x2 , …, xn).

В общем виде в последовательностных устройствах выходные переменные yi зависят не только от входных сигналов xm , но и от сигналов элементов памяти, поступающих за этот же такт.

В частности, в автоматах Мили выходные сигналы формируются именно таким образом, т. е.

yi t+1 = fi (x1 , x2 , …, xn , z1 , z2 , …, zs)t+1.

Это выражение называется функцией выхода автомата Мили.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11