скачать рефераты

скачать рефераты

 
 
скачать рефераты скачать рефераты

Меню

Биполярный транзистор КТ3107 скачать рефераты

p align="left">Но если под действием входного напряжения возник значительный ток эмиттера, то в область базы со стороны эмиттера инжектируются дырки, кото-рые для данной области являются неосновными носителями. Не успевая реком-бинировать с электронами при диффузии через базу, они доходят до коллектор-ного перехода. Чем больше ток эмиттера, тем больше дырок приходит к коллекторному переходу и тем меньше становится его сопротивление. Соот-ветственно увеличивается ток коллектора. Иначе говоря, с увеличением тока эмиттера в базе возрастает концентрация неосновных носителей, инжектирован-ных из эмиттера, а чем больше этих носителей, тем больше ток коллектор-ного перехода,т.е.ток коллектора .

Данное одному из электродов транзистора название «эмиттер» подчеркивает, что происходит инжекция дырок из эмиттера в базу.

По рекомендуемой терминологии эмиттером следует называть область тран-зистора, назначением которой является инжекция носителей заряда в базу. Кол-лектором называют область, назначением которой является экстракция носи-телей заряда из базы. А базой является область, в которую инжектируются эмиттером неосновные для этой области носители заряда.

Следует отметить, что эмиттер и коллектор можно поменять местами (так называемый инверсный режим). Но в транзисторах, как правило, коллекторный переход делается со значительно большей площадью, нежели эмиттерный пе-реход, так как мощность, рассеиваемая в коллекторном переходе, гораздо боль-ше, чем рассеиваемая в эмиттерном. Поэтому если использовать эмиттер в качестве коллектора, то транзистор будет работать, но его можно применять только при значительно меньшей мощности, что нецелесообразно. Если площади переходов сделаны одинаковыми (транзисторы в этом случае называют сим-метричными), то любая из крайних областей может с одинаковым успехом работать в качестве эмиттера или коллектора.

Поскольку в транзисторе ток эмиттера всегда равен сумме токов коллектора и базы, то приращение тока эмиттера также всегда равно сумме приращений коллекторного и базового токов:

(4.3)

Важным свойством транзистора является приблизительно линейная зависи-мость между его токами, т. е. все три тока транзистора изменяются приблизи-тельно пропорционально друг Другу. Пусть, для примера, =10мА, = 9,5 мА, = 0,5 мА. Если ток эмиттера увеличится, например, на 20% и станет равным 10 + 2 = 12 мА. то остальные токи возрастут также на 20%: = 0,5 + 0.1 = 0,6 мА и = 9,5 + 1,9 = 11,4 мА, так как всегда должно быть выполнено равенство (4.2), т.е. 12 мА=11,4 мА + 0,6 мА.

А для приращения т оков справедливо равен-ство (4.3) т .е.

2 мА = 1,9 мА + 0,1 мА.

Мы рассмотрели физические явления в транзисторе типа р-п-p.

Работу транзистора можно наглядно представить с помощью потенциальной диаграммы, которая показана на рис. 4-2 для тран-зистора типа р-n-p.

Рис. 4-2. Потенциальная диаграмма транзистора

Эту диаграмму удобно использовать для создания механи-ческой модели транзистора. Потенциал эмиттера принят за нулевой. В эмиттерном переходе имеется небольшой потенциальный барьер. Чем больше напряжение , тем ниже этот барьер. Коллекторный переход имеет значительную разность по-тенциалов, ускоряющую движение дырок. В механической модели шарики, аналогич-ные дыркам, за счет своих собственных скоростей поднимаются на барьер, аналогичный эмиттерному переходу, проходят через область базы, а затем уско-ренно скатываются с горки, аналогичной коллекторному переходу.

Помимо рассмотренных основных физических процессов в транзисторах при-ходится учитывать еще ряд явлений.

Существенное влияние на работу транзисторов оказывает сопротивление базы , т.е. сопротивление, которое база оказывает току базы . Этот ток протекает к выводу базы в направлении, перпендикулярном направлению эмиттер -- коллек-тор. Так как база очень тонкая, то в направлении от эмиттера к коллектору, т. е. для тока , ее сопротивление очень мало и не принимается во внимание. А в направлении к выводу базы сопротивление базы (его называют попе-речным) достигает сотен Ом, так как в этом направлении база аналогична очень тонкому проводнику. Напряжение на эмиттерном переходе всегда меньше, чем напряжение , между выводами базы и эмиттера, так как часть подво-димого напряжения теряется на сопротивлении базы. С учетом сопротивления можно изобразить эквивалентную схему транзистора для постоянного тока так, как это сделано на рис. 4-3. На этой схеме -- сопротивление эмиттера, в которое входят сопротивление эмиттерного перехода и эмиттерной области. Значение у маломощных транзисторов достигает десятков Ом. Это вытекает из того, что напряжение на эмиттерном переходе не превышает десятых долей вольта, а ток эмиттера в таких транзисторах составляет единицы миллиампер. У более мощных транзисторов больше и соответственно меньше. При-ближенно определяется формулой (в Омах)

(4.4)

где ток , выражается в миллиамперах.

Сопротивление коллектора представляет собой практически сопротивление коллекторного перехода и составляет единицы и десятки килоОм. В него вхо-дит также сопротивление коллекторной области, но оно сравнительно мало и им можно пренебречь.

Схема на рис (4-3) является весьма приближенной, так как на самом деле эмиттер, база и коллектор имеют между собой контакт не в одной точке, а во множестве точек по всей площади переходов.

r эо r ко

r Бо

E 1 E 2

Рис (4-3) Эквивалентная схема транзистора для постоянного тока

При повышении напряжения на коллекторном переходе в нем происходит лавинное размножение носителей заряда, являющееся главным образом результа-том ударной ионизации. Это явление и туннельный, эффект могут вызвать электрический пробой, который при возрастании тока может перейти в тепловой про-бой перехода.

Изменение напряжений на коллекторном и эмиттерном переходах сопро-вождается изменением толщины этих переходов. В результате изменяется толщина базы. Такое явление называют модуляцией толщины базы. Его особенно надо учитывать при повышении напряжения коллектор - база, так как тогда толщина коллекторного перехода возрастает, а толщина базы уменьшается. При очень тонкой базе может произойти эффект смыкания («прокол» базы) - соединение коллекторного перехода с эмиттерным. В этом случае область базы исчезает, и транзистор перестает нормально работать.

При увеличении инжекции носителей из эмиттера в базу происходит накоп-ление неосновных носителей заряда в базе. т. е. увеличение концентрации и сум-марного заряда этих носителей. Наоборот, при уменьшении инжекции происходит уменьшение концентрации и суммарного заряда неосновных носителей в ней. Этот процесс называют рассасыванием носителей заряда в базе.

В ряде случаев необходимо учитывать протекание по поверхности транзи-стора токов утечки, сопровождающееся рекомбинацией носителей в поверхностном слое областей транзистора.

Установим соотношения между токами в транзисторе. Ток эмиттера управ-ляется напряжением на эмиттерном переходе, но до коллектора доходит несколько меньший ток, который можно назвать управляемым коллекторным током, так как часть инжектированных из эмиттера в базу носителей рекомбинирует. Поэтому

(4.5)

где - коэффициент передачи тока эмиттера, являющийся основным параметром транзистора: он может иметь значения от 0,950 до 0,998.

Чем слабее рекомбинация инжектированных носителей в базе, тем ближе к 1. Через коллекторный переход, всегда проходит еще очень небольшой (не более единиц микроампер) неуправляемый обратный ток (рис. 4-4), называемый начальным током коллектора. Он неуправляем потому, что не проходит через эмиттерный переход. Таким образом, полный коллекторный ток

(4.6)

Во многих случаях , и можно считать, что . Если надо измерить, то это делают при оборванном проводе эмиттера. Действительно, из формулы (4.6) следует, что при ток .

Преобразуем выражение (4.6) так, чтобы выразить за-висимость тока от тока базы Заменим , суммой: где: - ток коллектора

-ток базы

-ток эмиттера

Рис. 4-4. Токи в транзисторе

Решим уравнение относительно .

Тогда получим:

Обозначим:

и

и напишем окончательное выражение

(4.7)

Здесь является коэффициентом передачи тока базы и составляет десятки единиц. Например, если = 0,95, то

а если коэффициент = 0,99, т. е. увеличился на 0,04, то

т. е. увеличивается в 5 с лишним раз!

Таким образом, незначительные изменения приводят к большим изме-нениям . Коэффициент так же, как и , относится к важным параметрам транзистора. Если известен то можно всегда определить по формуле

(4.8)

Ток называют начальным сквозным током, так как он протекает сквозь весь транзистор (через три его области и через оба n-p-перехода) в том случае, если , т. е. оборван провод базы. Действительно, из уравнения (4.7) при получаем . Этот ток составляет десятки или сотни микроампер и значительно превосходит начальный ток коллектора .Ток , и, зная, что , нетрудно найти . А так как , то

(4.9)

Значительный ток объясняется тем, что некоторая небольшая часть напряжения приложена к эмиттерному переходу в качестве прямого напря-жения. Вследствие этого возрастает ток эмиттера, а он в данном случае и является сквозным током.

При значительном повышении напряжения , ток резко возрастает и происходит электрический пробой. Следует отметить, что если , не слишком мало, при обрыве цепи базы иногда в транзисторе может наблюдаться быстрое, лавинообразное увеличение тока, приводящее к перегреву и выходу транзистора из строя (если в цепи коллектора нет резистора, ограничивающего возрастание тока). В этом случае происходит следующий процесс: часть напряжения , действующая на эмиттерном переходе, увеличивает ток , и равный ему ток , на коллекторный переход поступает больше носителей, его сопротивление и напряжение на нем уменьшаются и за счет этого возрастает напряжение на эмиттерном переходе, что приводит к еще большему увеличению тока, и т. д. Чтобы этого не произошло, при эксплуатации транзисторов запрещается разры-вать цепь базы, если не выключено питание цепи коллектора. Надо также сна-чала включить питание цепи базы, а потом цепи коллектора, но не наоборот.

Если надо измерить ток , то в цепь коллектора обязательно включают ограничительный резистор и производят измерение при разрыве провода базы.

3. Статические характеристики биполярного транзистора.

Схема с общей базой

В зависимости от того, какой электрод транзистора является общим для входного и выходного сигналов, различают три схемы включения транкзистора: общей базой (ОБ) с общим эмиттером (ОЭ) и с общим коллектором (ОК).

r эо r ко

r Бо

E 1 E 2

Рис. 5

Входные характеристики транзисторов в схеме с общей базой при определяются зави-симостью (5):

(5)

При большом обратном напряжении коллектора () ток мало зависит от коллекторного напряжения. На рис. 5-1,а по-казаны реальные входные характеристики кремневого транзистора. Они соответствуют теоретической зависимости (5.1), подтверждается и вывод о слабом влиянии коллекторного напряжения на ток эмиттера.

Рис 5-1

Входная статическая характеристика при UКБ = 0 (ну-левая) подобна обычной характеристике полупроводникового диода, включенного в прямом направлении. При подаче отри-цательного коллекторного напряжения входная характеристика смещается влево. Это свидетельствует о наличии в транзис-торе внутренней обратной связи. Обратная связь возникает в основном из-за сопротивления базы. В схеме с ОБ сопротив-ление базы является общим для входной и выходной цепей.

При подаче или увеличении коллекторного напряжения по-является или увеличивается IКБo. Кроме этого уменьшается Iэ.рек, так как при увеличении коллекторного напряжения происходит расширение коллекторного перехода и ширина базы уменьшается. Поэтому напряжение Uэб, приложенное к эмит-теру, при увеличении Uкб возрастает, что и объясня-ет увеличение тока эмиттера и смещение влево входной стати-ческой характеристики транзистора, включенного по схеме с общей базой.

Выходные, или коллекторные, статические характеристики представляют собой зависимости Ik = f(Uкб) при Iэ=const. Несмотря на то, что напряжение на коллекторе для транзистора p-n-р отрицательно, характеристики для удобст-ва принято изображать в положительных осях координат. Ну-левая выходная характеристика (IЭ = 0) является обычной характеристикой диода, включенного в обратном направлении. Увеличение тока эмиттера ведет к сдвигу выходной характе-ристики.

Как известно, при появлении тока эмиттера ток коллек-тора увеличивается на величину IK = ?Iэ ~Iэ. Ток IK можно рассматривать как искусственно созданный допол-нительный ток неосновных носителей коллекторного перехода.

Поэтому на основании формулы (5.1), где I0 = Ik, мож-но утверждать, что любая выходная характеристика транзис-тора с (ОБ) представляет собой ВАХ полупроводникового диода, смещенную по оси обратного тока на величину Iк.

(5.1)

Начальная область входных характеристик, построенная в соот-ветствии с теоретической зависимостью (5.1), показана на рис.(5-1 а) крупным масштабом (в окружности). Отмечены токи I11 и I12, а так-же эмиттерный ток закрытого транзистора.

Входные характеристики кремниевого транзистора показаны на pиc. 5-1,б. Они смещены от нуля в сторону прямых напряжений; как и у кремниевого диода, смещение равно 0,6--0,7 В. По отношению к входным характеристикам германиевого транзистора смещение со-ставляет 0,4 В.

Выходные характеристики.

Теоретические выходные характеристи-ки транзистора в схеме с общей базой при IЭ=const опре-деляются зависимостью (5.2):

(5.2)

Страницы: 1, 2, 3, 4, 5, 6