скачать рефераты

скачать рефераты

 
 
скачать рефераты скачать рефераты

Меню

Курсовая: Защита электронной почты в Internet скачать рефераты

Ключевым объектом в механизмах аутентификации и конфиденциальности для IP является защищенная связь (Security Association). Связь представляет со­бой одностороннее отношение между отправителем и получателем, применяю­щим сервис защиты к транспортному потоку. Сервис защиты предоставляет возможность для защищенной связи ис­пользовать либо АН, либо ESP, но никак не обе эти возможности одновременно. В любом пакете IP защищенная связь однозначно идентифи­цируется адресом пункта назначения в заголовке IPv4 или IPv6 и индексом па­раметров защиты (даёт возможност ьвыбрать защищённую связь по которой должен обрабатываться полученный пакет) во вложенном заголовке расширения (АН или ESP). Заголовки АН и ESP поддерживают два режима использования: транспортный и туннельный. Дадим краткий обзором этих режимов. Транспортный режим. Транспортный режим обеспечивает защиту прежде всего для протоколов высшего уровня. Это значит, что защита транспортного режима распространяет­ся на полезный груз пакета IP. Примеры включают сегмент TCP или UDP, или пакет протокола ICMP , которые размещаются непосредственно над IP в стеке главного прото­кола. Когда система использует заголовки АН или ESP над IPv4, полезным грузом являются данные, обычно размещаемые сразу после заголовка IP. Для IPv6 полезным грузом яв­ляются данные, обычно следующие после заголовка IP и всех имеющихся заго­ловков расширений IPv6, за возможным исключением заголовка параметров ад­ресата, который тоже может подлежать защите. ESP в транспортном режиме шифрует и, если нужно, идентифицирует полез­ный груз IP, но не заголовок IP. АН в транспортном режиме идентифицирует полезный груз IP и некоторые части заголовка IP. Туннельный режим. Туннельный режим обеспечивает защиту всего пакета IP. После добавления к пакету IP полей АН или ESP весь пакет, вместе с полями защиты, рассматривается как полезный груз некоторого нового "внешнего" пакета IP с новым внешним заголовком IP. Весь оригинальный, или внутренний, пакет при этом пересылается через "туннель" от одной точки сети IP к другой, и ни один из маршрутизаторов на пути не может проверить внут­ренний заголовок IP. Ввиду того что оригинальный пакет инкапсулирован в но­вый, больший пакет может иметь совершенно другие адреса источника и адреса­та, что усиливает защиту. Туннельный режим используется тогда, когда один или оба конца защищенной связи являются шлюзами защиты, например бранд­мауэрами или маршрутизаторами, которые основаны на IPSec. При использова­нии туннельного режима системы в сетях за брандмауэрами могут осуществлять защищенный обмен данными без применения IPSec. Незащищенные пакеты, ге­нерируемые такими системами, связываются по туннелям, проложенным через внешние сети с помощью туннельного режима защищенной связи, установленно­го программным обеспечением IPSec в брандмауэре или защищенном маршрути­заторе на границе локальной сети. Функциональные возможности транспортного и туннельного режимов
Вид заголовка

Транспортный режим защи­щенной связи

Туннельный режим защищенной связи

АН

Идентифицирует полезный груз IP, а также отдельные части за­головка IP и заголовков расши­рений IPv6 Идентифицирует весь внутренний пакет IP (заголовок и полезный груз внутреннего пакета IP), а также от­дельные части внешнего заголовка IP и внешних заголовков расшире­ний IPv6

ESP

Шифрует полезный груз IP и все заголовки расширений IPv6, следующие за заголовком ESP Шифрует внутренний пакет IP

ESP с аутен­тификацией

Шифрует полезный груз IP и все заголовки расширений IPv6, следующие за заголовком ESP.

Идентифицирует полезный груз IP, но не заголовок IP

Шифрует внутренний пакет IP. Идентифицирует внутренний пакет IP
4. 2. Заголовок аутентификации (AH). 4. 2. 1. Структура заголовка. Заголовок аутентификации (АН) обеспечивает поддержку целостности данных и аутентификации пакетов IP. Свойство целостности данных гарантирует невоз­можность незаметной модификации содержимого пакета в пути следования. Функция аутентификации дает возможность конечной системе или сетевому уст­ройству идентифицировать пользователя или приложение и соответственно от­фильтровать трафик, а также защититься от очень распространенных сегодня в Internet атак с подменой сетевых адресов. Заголовок АН также защищает от атак воспроизведения сообщений. Заголовок аутентификации состоит из следующих полей

Следующий заголовок

Длина полезного груза

Зарезервировано

Индекс параметров защиты

Порядковый номер

Данные аутентификации (переменой длины)

Заголовок аутентификации IPSec. § Следующий заголовок. Идентифицирует тип заголовка, следую­щего непосредственно за данным заголовком § Длина полезного груза (8 битов). Длина заголовка аутентификации в 32- битовых словах, уменьшенная на 2. § Зарезервировано (16 битов). Для будущего использования. § Индекс параметров защиты (32 бита). Идентифицирует защищенную связь. § Порядковый номер (32 бита). Значение счетчика, для сервиса защиты от воспроизведения § Данные аутентификации (переменной длины). Поле переменной длины , содер­жащее MAC для данного пакета. Атаки воспроизведения сообщений заключаются в том, что противник может получить экземпляр удостоверенного пакета и позже предъявить его предпола­гаемому адресату. Повторное получение одинаковых удостоверенных пакетов IP может каким-то образом нарушить сервис или иметь какие-то другие нежела­тельные последствия. 4. 2. 2. Использование AH в транспортном и туннельном режиме. В этом подразделе мы рассмотрим область применения аутентификации, обеспечиваемой с помощью протокола АН, и размещение заголовка аутентифи­кации в каждом из двух режимов. При этом случаи IPv4 и IPv6 несколько раз­личаются. Для транспортного режима АН с применением IPv4 данные АН размещаются непосредственно после оригинального заголовка IP и перед полезным грузом IP (например, сегментом TCP). Аутенти­фикации подлежит весь пакет, за исключением изменяемых полей в заголовке IPv4, которые обнуляются для вычисления значения MAC.

Удостоверяется за исключением изменяемых полей
Оригинальный заголовок IPAHTCPДанные
Удостоверяется за исключением изменяемых полей
В контексте IPv6 данные АН рассматриваются как полезный груз сквозной передачи; т.е. проверка и обработка этих данных промежуточными маршрутиза­торами не предполагается. Поэтому данные АН размещаются после базового за­головка IPv6 и заголовков расширений транзита, маршрутизации и фрагмента­ции. Заголовок расширения параметров адресации может размещаться до или после заголовка АН — в зависимости от требований семантики. Опять же, ау­тентификация предполагается для всего пакета, за исключением изменяемых полей, которые обнуляются для вычисления значения MAC.
Оригинальный заголовок IPТранзит, адресация, маршрутизация, фрагментацияAHАдресацияTCPДанные
Для туннельного режима АН удостоверяется весь оригинальный пакет IP, a заголовок АН вставляется между оригинальным заголовком IP и новым внеш­ним заголовком IP. Внутренний заголовок IP несет адреса ориги­нальных источника и адресата, в то время как внешний заголовок IP может со­держать совершенно другие адреса IP (например, адреса брандмауэров или дру­гих шлюзов защиты). В туннельном режиме весь внутренний пакет IP, включая весь внутренний заголовок IP, защищается средствами АН. Внешний заголовок IP (а в случае IPv6 и внешние заголовки расширений IP) защищается с исключением изменяе­мых и непрогнозируемых по значению полей.
Удостоверяется за исключением изменяемых полей в новом заголовке IP

Новый заголовок IP

AH

Оригинальный заголовок IP

TCP

Данные

Удостоверяется за исключением изменяемых полей в новом заголовке IP и его заголовках расширений
IPv4

Новый заголовок IP

Заголовки расширений

AH

Оригинальный заголовок IP

Заголовки расширений

TCP

Данные

IPv6 4. 3. Протокол ESP. 4. 3. 1. Формат пакета ESP Поля пакета ESP. • Индекс параметров защиты (32 бита). Идентифицирует защищенную связь. • Порядковый номер (32 бита). Значение счетчика, обеспечивающее функ­цию защиты от воспроизведения, как и в случае для АН. • Полезный груз (переменной длины). Это сегмент транспортного уровня (в транспортном режиме) или пакет IP (в туннельном режиме), который за­щищается шифрованием. • Заполнитель (0-255 байтов). • Длина заполнителя (8 битов). Указывает число байтов заполнителя, непо­средственно предшествующего данному полю. • Следующий заголовок (8 битов). Идентифицирует тип данных, содержа­щихся в поле данных полезного груза, с помощью идентификации первого заголовка этого полезного груза (например, заголовка расширения IPv6 или протокола верхнего уровня, такого как TCP). • Данные аутентификации (переменной длины). Поле переменной длины , содер­жащее код ICV (Integrity Check Value — код контроля целостности), вы­числяемый для всего пакета ESP без поля данных аутентификации.

Индекс параметров защиты

Порядковый номер

Данные полезного груза

Заполнитель (0-255 байт)

Длина заполнителя

Следующий заголовок

Данные аутентификации (переменной длины)

Поле заполнителя предназначено для следующих целей. • Если алгоритм шифрования требует, чтобы длина открытого текста была кратна некоторому целому числу байтов (например, длине одного блока блочного шифра), поле заполнителя служит для того, чтобы дополнить от­крытый текст (складывающийся из полей полезного груза, заполнителя, длины заполнителя и следующего заголовка) до нужной длины. • Формат ESP требует, чтобы поля длины заполнителя и следующего заго­ловка были выровнены по правому краю в 32-битовом слове. Это эквива­лентно требованию, чтобы шифрованный текст имел длину, кратную 32 битам. Поле заполнителя предназначено для того, чтобы осуществить та­кое выравнивание. • Дополнительное заполнение можно использовать тогда, когда требуется обеспечить частичную конфиденциальность для транспортного потока, чтобы скрыть истинную длину полезного груза. 4. 3. 2. Шифрование и алгоритмы аутентификации. Сервис ESP предполагает шифрование полей полезного груза, заполнителя, длины заполнителя и следующего заголовка. Имеющиеся на сегодня спецификации требуют, чтобы любая реализация под­держивала использование алгоритма DES в режиме СВС (режим сцепления шифрованных блоков. Другие алгоритм которые могут применяться для сервиса ESP: • "тройной" DES с тремя ключами, • RC5, • IDEA, • "тройной" IDEA с тремя ключами, • CAST, • Blowfish. Как и АН, протокол ESP поддерживает использование значений MAC длиной по умолчанию 96 битов. Так же как и в случае с АН, имеющиеся сегодня спе­цификации требуют, чтобы любая реализация поддерживала схемы HMAC-MD5-96 и HMAC-SHA-1-96. 4. 3. 3. Транспортный режим ESP. Транспортный режим ESP служит для шифрования и, если нужно, аутенти­фикации данных, пересылаемых по протоколу IP (например, сегмента TCP). Для этого режима в случае с IPv4 заголовок ESP раз­мещается в пакете IP непосредственно перед заголовком транспортного уровня (например, TCP, UDP, ICMP), а концевик (trailer) пакета ESP (содержащий поля заполнителя, длины заполнителя и следующего заголовка) размещается после пакета IP; если же используется функция аутентификации, то поле данных ау­тентификации ESP добавляется после концевика ESP. Весь сегмент транспортно­го уровня вместе с концевиком ESP шифруются. Аутентификация охватывает весь шифрованный текст и заголовок ESP.

Удостоверяется

Курсовая: Защита электронной почты в Internet

Шифруется

Курсовая: Защита электронной почты в Internet

Оригинальный заголовок IP

Заголовок ESP

TCP

Данные

Концевик ESP

Аутентификатор ESP

В контексте IPv6 данные ESP рассматриваются как предназначенный для сквозной пересылки полезный груз, не предполагающий проверку или обработку промежуточными маршрутизаторами. Поэтому заголовок ESP размещается после основного заголовка IPv6 и заголовков расширений транзита, маршрутизации и фрагментации. Заголовок расширения параметров адресата может быть помещен до или после заголовка ESP — в зависимости от требований семантики. В случае IPv6 шифрование охватывает весь сегмент транспортного уровня вместе с конце­виком ESP, а также заголовок расширения параметров адресата, если этот заго­ловок размещается после заголовка ESP. Аутентификация предполагается для шифрованного текста и заголовка ESP.

Удостоверяется

Курсовая: Защита электронной почты в Internet

Шифруется

Курсовая: Защита электронной почты в Internet

Ориги­нальный заголовок IP

Транзит, адресация, маршру­тизация, фрагмен­тация

Заголовок ESP

адресация

TCP

Данные

Концевик ESP

Аутенти­фикатор ESP

В транспортном режиме выполняются следующие операции: 1. В узле источника блок данных, состоящий из концевика ESP и всего сег­мента транспортного уровня, шифруется, а открытый текст этого блока за­меняется шифрованным текстом, что формирует пакет IP для пересылки. Если выбрана опция аутентификации, то добавляется поле аутентификации. 2. Затем пакет направляется адресату. Каждый промежуточный маршрутиза­тор должен проверить и обработать заголовок IP, а также все заголовки расширений IP, доступные в нешифрованном виде. Шифрованный текст при этом остается неизменным. 3. Узел адресата проверяет и обрабатывает заголовок IP и все заголовки рас­ширений IP, доступные в нешифрованном виде. Затем на основе информа­ции индекса параметров защиты в заголовке ESP дешифруются остальные части пакета, в результате чего становится доступным сегмент транспорт­ного уровня в виде открытого текста. Использование транспортного режима обеспечивает конфиденциальность для любого применяющего этот режим приложения, что позволяет избежать необхо­димости реализации функций обеспечения конфиденциальности в каждом от­дельном приложении. Этот режим достаточно эффективен, а объем добавляемых к пакету IP данных при этом невелик. Недостатком этого режима является то, что при его использовании не исключается возможность анализа трафика пере­сылаемых пакетов. 4. 3. 4. Туннельный режим ESP. Туннельный режим ESP предназначен для шифрования всего пакета IP. Для этого режима заголовок ESP добавляется к пакету как префикс, а затем такой пакет вместе с концевиком ESP шифруются. Данный метод можно использовать, когда требуется исключить возможность атак, построенных на анализе трафика. Ввиду того что заголовок IP содержит адрес пункта назначения и, возможно, директивы исходной маршрутизации вместе с информацией о параметрах тран­зита, нельзя просто передать шифрованный пакет IP с добавленным к нему в виде префикса заголовком ESP. Промежуточные маршрутизаторы не смогут об­работать такой пакет. Таким образом, необходимо включить весь блок (заголовок ESP, шифрованный текст и данные аутентификации, если они есть) во внешний пакет IP с новым заголовком, который будет содержать достаточно информации для маршрутизации, но не для анализа трафика.

Удостоверяется

Курсовая: Защита электронной почты в Internet

Шифруется

Курсовая: Защита электронной почты в Internet

Новый заголовок IP

Заголовок ESP

Оригинальный заголовок IP

TCP

Данные

Концевик ESP

Аутентификатор ESP

IPv4

Удостоверяется

Курсовая: Защита электронной почты в Internet

Шифруется

Курсовая: Защита электронной почты в Internet

Новый за­головок IP

Заголовки расшире­ний

Заголовок ESP

Ориги­нальный заголовок IP

Заголовок расшире­ний

TСP

Данные

Концевик ESP

Аутенти­фикатор ESP

IPv6 В то время как транспортный режим подходит для защиты соединений меж­ду узлами, поддерживающими сервис ESP, туннельный режим оказывается по­лезным в конфигурации, которая предполагает наличие брандмауэра или иного шлюза защиты, предназначенного для защиты надежной внутренней сети от внешних сетей. В случае с туннельным режимом шифрование используется для обмена только между внешним узлом и шлюзом защиты или между двумя шлю­зами защиты. Это разгружает узлы внутренней сети, избавляя их от необходи­мости шифрования данных, и упрощает процедуру распределения ключей, уменьшая число требуемых ключей. Кроме того, такой подход усложняет про­блему анализа потока сообщений, направляемых конкретному адресату. Рассмотрим случай, когда внешний узел соединяется с узлом внутренней се­ти, защищенной брандмауэром, и когда ESP используется внешним узлом и брандмауэром. Тогда при пересылке сегмента транспортного уровня от внешнего узла к узлу внутренней сети будут выполнены следующие действия. 1. Источник готовит внутренний пакет IP с указанием адреса пункта назна­чения, являющегося узлом внутренней сети. К этому пакету в виде пре­фикса добавляется заголовок ESP. Затем пакет и концевик ESP шифруют­ся и к результату могут быть добавлены данные аутентификации. Полу­ченный блок заключается во внешний пакет IP с новым заголовком IP (базовый заголовок плюс необязательные расширения, например парамет­ров маршрутизации и транзита для IPv6), в котором адресом пункта на­значения является адрес брандмауэра. 2. Внешний пакет отправляется брандмауэру. Каждый промежуточный маршру­тизатор нужно проверить и обработать внешний заголовок IP и все внешние заголовки расширений IP, оставив шифрованный текст неизменным. 3. Брандмауэр-адресат проверяет и обрабатывает внешний заголовок IP и все внешние заголовки расширений IP. Затем на основе информации индекса параметров защиты в заголовке ESP брандмауэр дешифрует остальные части пакета, в результате чего становится доступным внутренний пакет IP в виде открытого текста. Этот пакет потом передается по внутренней сети. 4. Внутренний пакет направляется через маршрутизаторы внутренней сети или непосредственно к узлу-адресату. 4. 4. Комбинация защищённых связей. Отдельная защищенная связь может использовать либо протокол АН, либо ESP, но никак не оба эти протокола одновременно. Тем не менее, иногда кон­кретный поток обмена данными может требовать и сервиса АН, и сервиса ESP. Кроме того, конкретному потоку обмена данными может понадобиться сервис IPSec для связи между главными узлами и другой сервис для связи между шлю­зами защиты, например брандмауэрами. Во всех этих случаях одному потоку для получения всего комплекса услуг IPSec требуется несколько защищенных связей. Здесь вводится понятие пучка защищенных связей (security association bundle), обозначающее набор защищенных связей, посредством которых потоку должно предоставляться необходимое множество услуг IPSec. При этом защи­щенные связи в пучке могут завершаться в различных конечных точках. Защищенные связи могут быть объединены в пучки следующими двумя спо­собами. § Транспортная смежность. Применение более одного протокола защиты к одному пакету IP без туннелирования. Этот подход к созданию комбина­ции АН и ESP оказывается эффективным только для одного уровня вло­жения: дальнейшие вложения не дают дополнительного выигрыша, по­скольку обработка выполняется в одной инстанции — IPsec (конечного) получателя. § Повторное туннелирование. Применение нескольких уровней протоколов защиты с помощью туннелирования IP. Этот подход допускает множество уровней вложения, поскольку туннели могут начинаться и завершаться в разных использующих IPsec узлах сети вдоль маршрута передачи данных. Эти два подхода можно объединить (например, организовав в части туннель­ной защищенной связи между шлюзами защиты транспортную защищенную связь между находящимися на пути узлами). Заключение. Исходя из рассмотренных уровней защиты потока данных в Web и архитектуры построения сети на основе стека TCP/IP был произведён обзор стандартов, существующих в настоящее время и обеспечивающих надёжную передачу данных (по e-mail), если используемое нами программное и аппаратное обеспечение поддерживает комплекс требований, изложенных в этих стандартах. Итак, рекомендуемые меры и средства для защиты электронной переписки: 1. Сильные средства аутентификации, например, технология двухфакторной аутентификации. 2. Эффективное построение и администрирование сети. Речь идет о построении коммутируемой инфраструктуры, мерах контроля доступа и фильтрации исходящего трафика, закрытии «дыр» в программном обеспечении с помощью модулей- «заплаток» и регулярном его обновлении, установке антивирусных программ и многом ином. 3. Криптографию, основанную на сильных криптоалгоритмах (Симметричные - RC4, RC5, CAST, DES, AES, оптимальная длина ключа которых = 128 разрядов, ассиметричные - RSA, Diffie-Hellman и El-Gamal, оптимальная длина которых 2048 разряда. 4. Если криптографический алгоритм, используемый в системе достаточно стоек, а генератор случайных чисел, используемый для создания ключей, никуда не годится, любой достаточно опытный криптоаналитик в первую очередь обратит своё внимание именно на него. 5. Если удалось улучшить генератор, но ячейки компьютера не защищены, после того как в них побывал сгенерированный ключ, грош цена такой безопасности. 6. Следует учитывать, что большинство сбоев в обеспечении информационной безопасности происходит не из-за найденных слабостей в криптографических алгоритмах и протоколах, а из-за вопиющих оплошностей в их реализации. 7. Данная мера, которая в основном используется для усиления защиты электронных коммерческих операций, может быть реализована и для защиты обычной e-mail. Это построение многоуровневой эшелонированной системы обороны, которая заключается в реализации защиты на нескольких уровнях модели OSI. Например, если какие-то приложения Web имеют встроенные протоколы защиты данных (для e-mail это могут быть PGP или S/MIME), использование IPSec позволяет усилить эту защиту. 8. Надо отметить, что SSL защищает письма только при передаче и если не используются другие средства криптозащиты, то письма при хранении в почтовых ящиках и на промежуточных серверах находятся в открытом виде. В этом случае надо использовать средства шифрования прикладного уровня (S/MIME) или сеансового уровня (IPSec), на котором реализуется шифрование всего пакета IP (или TCP в зависимости от режима). Источники информации: 1. Вильям Столингс, Криптография и защита сетей: принципы и практика, 2-е издание: пер. с английского – М, : Издательский дом «Вильямс», 2001. 2. Материалы электронной библиотеки InfoCity. (www.infocity.ru) 3. Материалы сервера www.citforum.ru

Страницы: 1, 2, 3, 4