скачать рефераты

скачать рефераты

 
 
скачать рефераты скачать рефераты

Меню

Управление процентным риском портфеля ГКО-ОФЗ в посткризисный период скачать рефераты

Таблица 2.3.4.

Булевы переменные, выражающие специфику различных инвесторов.

S

равна 1, если срок вложений инвестора - сверхкраткосрочный, и 0 - в противоположном случае

L

равна 1, если срок вложений инвестора - среднесрочный, и 0 - в противоположном случае

F

равна 1, если инвестор прогнозирует падение процентных ставок, и 0 - в противоположном случае

G

равна 1, если инвестор прогнозирует рост процентных ставок, и 0 - в противоположном случае

N

равна 1, если инвестор характеризуется низкой степенью неприятия процентного риска (w=0.5), и 0 - в противоположном случае

A

равна 1, если инвестор характеризуется высокой степенью неприятия процентного риска (w=2), и 0 -- в противоположном случае

В результате было получено следующее уравнение зависимости между дюрацией оптимального портфеля и фиктивными переменными, отражающими индивидуальные особенности инвестора:

DFW = 0.855 - 0.049 S + 0.069 L + 0.102 F - 0.342 G + 0.166 N - 0.125 A; R2 = 0.868. (2.3.27)

(16.144) (-0.993) (1.417) (2.079) (-6.968) (3.377) (-2.558)

Все коэффициенты регрессии имеют ожидаемые знаки (bS<0, bL>0, bF>0, bG<0, bN>0, bA<0). При этом четыре из шести коэффициентов статистически значимы на 6% уровне. Наибольшие по абсолютной величине значения t-статистик зафиксированы у коэффициентов при переменных, отражающих характер прогнозов инвестора и его стремление к устранению процентного риска, а наименьшие - у коэффициентов при переменных, измеряющих продолжительность периода вложений.

Полученные результаты позволили автору прийти к заключению, что важнейшим фактором, определяющим размер дюрации оптимального портфеля при осуществлении краткосрочных рисковых вложений, является характер прогнозов инвестора. Большое значение играет и степень неприятия процентного риска. Чем сильнее степень уверенности инвестора в падении уровня процентных ставок в ближайшем будущем, чем больше его готовность рисковать и чем более продолжительным является его период вложений, тем больше дюрация оптимального портфеля.

2.4. Краткосрочное прогнозирование конъюнктуры рынка ГКО-ОФЗ.

Динамика процентных ставок определяется взаимодействием целого ряда факторов: денежно-кредитной и налогово-бюджетной политики государства, состояния ликвидности банковской системы, тенденций развития инфляционных процессов, спроса на кредитные ресурсы со стороны реального сектора экономики, конъюнктуры смежных секторов финансового рынка и степени их интегрированности с сектором долговых финансовых инструментов, а также зависит от потока информационных сообщений, отражающих перспективы изменения состояния этих факторов, которые поступают рыночным агентам и определяют характер их последующих действий. Одни из факторов определяют долгосрочные тенденции изменения уровня процентных ставок, другие вызывают краткосрочные колебания, затухающие через несколько дней после первичной реакции рынка.

Автор полагает, что исследуя реакцию процентных ставок на изменения значений макроэкономических и финансовых показателей, отражающие перемены в состоянии экономики страны и конъюнктуре финансового рынка, можно построить модель прогнозирования, способную предсказывать направление движения процентных ставок более, чем в 50% случаев. Конечно, намерение добиться чрезвычайно высокой точности прогнозов является утопией. Набор доступных индикаторов, сколь бы широким он ни был, не может дать полностью адекватную картину комплекса сил, определяющих траекторию движения процентных ставок. Кроме того, эффективные рынки оперативно реагируют на вновь поступающую информацию, поэтому лаговые значения доступных индикаторов могут объяснить лишь часть вариации будущих изменений прогнозируемого показателя. В этой связи любая, даже самая эффективная модель прогнозирования обречена на ошибки; она не может гарантировать тесной корреляции между предсказанными и фактическими значениями объясняемой случайной переменной.

Однако попытка построить модель, верно определяющую направление движения рынка немногим более, чем в 50% случаев, и обеспечивающую небольшую положительную корреляцию между прогнозируемыми и фактическими изменениями, при определенных обстоятельствах может увенчаться успехом. По мнению автора, степень эффективности прогнозирования зависит от трех основных факторов: степени устойчивости тенденций, определявших динамику процентных ставок в недавнем прошлом, степени эффективности рынка, или скорости его адаптации к новым состояниям факторов среды, а также качества используемой модели. Два первых фактора находятся вне рамок контроля исследователя; они задают условия, в которых решается задача. Однако третий фактор поддается контролю: исследователь может выбирать различные концептуальные подходы к построению модели, вводить в рамки анализа или исключать из них различные переменные, сужать или расширять диапазон исторических данных, на основе которых оцениваются параметры модели.

В настоящей работе осуществляется проверка гипотезы о существовании сложной нелинейной зависимости между прошлыми значениями индикаторов российского финансового рынка и последующими изменениями спот-ставки рынка ГКО-ОФЗ для срока один год, отвечающей за часть вариации этих изменений. В качестве инструмента идентификации данной зависимости диссертантом используются нейронные сети - гибкие непараметрические модели, нашедшие широкое применение в различных финансовых приложениях.

Выбор нейронных сетей в качестве инструментального средства решения задачи прогнозирования динамики процентных ставок обусловлен их уникальной способностью к аппроксимации нелинейных зависимостей. Согласно следствию из теоремы Колмогорова-Арнольда, доказанному Хехт-Нильсеном, произвольная непрерывная функция нескольких переменных может быть аппроксимирована нейронной сетью с любой наперед заданной степенью точности. Hecht-Nielsen R. Neurocomputing. - San-Diego, Addison-Wesley, 1991. - p.136. Важным аргументом, послужившим основанием выбора нейронных сетей в качестве инструмента моделирования, стали успехи целого ряда исследователей в решении различных проблем анализа финансовых рынков на основе разработки нейросетевых приложений.

Обработка информации в нейронной сети осуществляется при помощи особых структурных элементов - искусственных нейронов. В нейрон поступает набор входных сигналов Xi. Каждый входной сигнал корректируется на соответствующий ему вес Wi. Потенциал нейрона рассчитывается по формуле

V = W0 + Xi Wi. (2.4.1)

Выходной сигнал нейрона формируется в результате преобразования потенциала нелинейной передаточной функцией f(V). Обычно для этого используется сигмоидальная функция вида

. (2.4.2)

Рис.2.4.1. Математическая модель нейрона.

Объединяя искусственные нейроны в сети, можно получить различные варианты архитектуры. Но в финансовых приложениях чаще всего используются многослойные персептроны (multilayer perceptrons). Это нейронные сети, позволяющие моделировать зависимости между векторами входных и выходных переменных. В многослойных персептронах нейроны объединяются в слои, каждый из которых обрабатывает одинаковые входные сигналы.

Рис.2.4.2. Архитектура многослойного персептрона.

Входной слой формируют независимые переменные, выходной -- зависимые. Между ними располагаются скрытые слои. Выходы нейронов предыдущего слоя направляются на вход нейронов последующего слоя. База знаний нейронной сети представляет собой матрицу весов связей между нейронами.

Процесс настройки весов многослойного персептрона называется обучением. Для этого используется обучающая выборка - множество векторов значений объясняющих и объясняемых переменных. Цель обучения заключается в минимизации ошибки оценки объясняемых переменных на основе информации о значениях объясняющих переменных.

Итеративный алгоритм обучения многослойных персептронов, ставший впоследствии классическим и получивший название алгоритма обратного распространения ошибки (error backpropagation), впервые был разработан Полом Вербосом в 1974 г. в рамках работы над магистерской диссертацией в Гарвардском университете Werbos P. Beyond regression: New tools for prediction and analysis in the behavioral sciences. - Harvard University, Masters thesis, 1974.. Однако работа Вербоса не была должным образом оценена и долгое время оставалась неизвестной крупнейшим ученым. В 1986 г. алгоритм обратного распространения был заново открыт и популяризирован Д.Румельхартом, Г.Хинтоном и Р.Вильямсом Rumelhart D., Hinton G., Williams R. Learning internal representation by error propagation. - Parallel distributed processing, 1986, Vol.1. - p.318-362.. С начала 1990-х гг. алгоритм обратного распространения стал активно применяться в прикладных разработках.

Алгоритм обратного распространения осуществляет минимизацию функции ошибки, определенной на множестве возможных значений весов сети. Функция ошибки обычно задается как

, (2.4.3)

где 1/2 - константа, введенная для удобства при вычислении производных, i - порядковый номер выходного нейрона, Y -- размер сигнала выходного нейрона, D - обучающее значение объясняемой переменной.

На каждой итерации работы алгоритма осуществляется переход к новой точке пространства весов сети. Для этого используется метод градиентного спуска, позволяющий выбрать направление, в котором скорость уменьшения значения функции ошибки является максимальной. Коррекция весов производится по правилу

, (2.4.4)

где E - функция ошибки, W - вес, - коэффициент обучения (размер шага корректировки), t - порядковый номер итерации.

Вычисление производных функции ошибки по весам сети осуществляется по формуле

, (2.4.5)

где j -- номер нейрона предыдущего слоя, i - номер нейрона последующего слоя, W - вес, V - потенциал, f - передаточная функция.

Производные ошибки по потенциалам вычисляются по правилу цепи, которое и обеспечивает процесс обратного распространения ошибки из нейронов выходного слоя в нейроны предыдущих слоев.

Для выходных нейронов

. (2.4.6)

Для скрытых нейронов

, (2.4.7)

где h -- номер нейрона последующего слоя, i -- номер нейрона обрабатываемого слоя.

В целях ускорения процесса обучения часто используется модификация алгоритма обратного распространения, которая обеспечивает большую стабильность процесса корректировки за счет применения оператора экспоненциального сглаживания. В этом случае уравнение обучения принимает вид

, (2.4.8)

где -- момент, - коэффициент обучения.

В ходе обучения сети многократно предъявляется один и тот же набор обучающих примеров. Чем дольше продолжается процесс обучения, тем лучше качество аппроксимации, демонстрируемое сетью при оценке значений выходных переменных по обучающей выборке. Однако через определенное число эпох обучения (под эпохой понимается однократное предъявление сети используемого набора обучающих примеров) улучшение качества аппроксимации начинает обеспечиваться не в результате правильной идентификации нелинейной зависимости между объясняющими и объясняемыми переменными, а за счет точности настройки на специфические особенности обучающих примеров. Этот феномен, получивший название переобучения (overtraining), находит отражение в падении способности сети к обобщению, то есть к адекватной оценке значений выходных переменных по наблюдениям, не предъявленным в ходе обучения.

Для того, чтобы разрешить проблему переобучения, массив исходных данных разбивается на обучающую и тестовую выборки. Обучающая выборка используется в процессе работы алгоритма коррекции матрицы весов сети. Тестовая выборка используется для контроля состояния обученности сети. Процесс обучения прекращается, когда значение ошибки оценки значений выходных переменных по тестовой выборке достигает минимума.

В первой половине 1990-х годов целый ряд исследователей обратился к методологии нейронных сетей как к инструментальному средству анализа финансовых рынков. Однако основные усилия обошли стороной сферу изучения процессов функционирования рынков облигаций. Большинство работ, опубликованных в этот период, посвящены прогнозированию динамики рынков акций и иностранных валют, определению рейтингов кредитоспособности заемщиков, оценке опционов. Бэстенс Д.-Э., ван ден Берг В.-М., Вуд Д. Нейронные сети и финансовые рынки: принятие решений в торговых операциях. - М.: ТВП, 1997. - 235 с.

Azoff E.M. Neural network time series forecasting of financial markets. - Chichester: Wiley, 1994. - 196 p.

Gately E. Neural networks for financial forecasting. - N.Y.: Wiley, 1996. - 169 p.

Intelligent systems for finance and business. // eds. Goonatilake, Treleaven. - Chichester: Wiley, 1995. - 335 p.

Neural networks in the capital markets. // ed. Refenes A.-P. - Chichester: Wiley, 1995. - 379 p.

Trading on the edge: neural, genetic and fuzzy systems for chaotic financial markets. // ed. Deboeck G. - N.Y.: Wiley, 1994. - 377 p.

Первая попытка разработки нейросетевой модели прогнозирования конъюнктуры рынка облигаций была предпринята В.Ченгом, Л.Вагнером и Ч.Лином Cheng W., Wagner L., Lin Ch. Forecasting the 30-year U.S. Treasury bond with a system of neural networks. - NeuroVest Journal, 1996, Vol.4, No.1. - p.10-15. . Их усилия были направлены на построение модели, прогнозирующей направление изменения цены тридцатилетней облигации Казначейства США через одну неделю. Используя в качестве объясняющих переменных спот-ставки для различных сроков вложений, индексы рынка акций, денежный агрегат M2, курсы доллара к японской иене и немецкой марке, а также цены на нефть и золото, они сконструировали нейронную сеть, оказавшуюся способной правильно определять направление изменения цены в 67% случаев.

Результаты, полученные Ченгом, Вагнером и Лином, показали, что задача краткосрочного прогнозирования конъюнктуры стабильного высоколиквидного рынка государственных облигаций с использованием нейросетевых моделей вполне разрешима. Однако российский рынок государственных ценных бумаг существенно отличен от американского, что ставит под сомнение возможность эффективного применения нейросетевых алгоритмов в целях поддержки принятия решений по управлению портфелем ГКО-ОФЗ.

Во-первых, очень сильное влияние на конъюнктуру рынка ГКО-ОФЗ оказывают политические события, которые практически не поддаются формализованному анализу и прогнозированию. Во-вторых, уровень ликвидности инструментов рынка ГКО-ОФЗ и объем совершаемых на нем операций крайне низок. По некоторым инструментам в течение торговой сессии вообще не заключается ни одной сделки, что совершенно нетипично для развитых рынков государственных ценных бумаг. В результате цены облигаций оказываются чувствительными к непредсказуемым колебаниям спроса и предложения со стороны отдельных операторов. В-третьих, макроэкономическое положение России характеризуется частыми и существенными изменениями, что не позволяет использовать в ходе анализа достаточно продолжительные исторические выборки.

В то же время все вышеизложенное позволяет предположить, что российский рынок ГКО-ОФЗ не является эффективным. Вполне возможно, что сигналы со смежных секторов финансового рынка отражаются на ценах государственных облигаций с небольшим лагом. Если эта гипотеза соответствует действительности, модель прогнозирования краткосрочных колебаний процентных ставок может оказаться способной обеспечить правильное определение направления движения рынка более, чем в 50% случаев. Изучение кросс-корреляций между темпом прироста спот-ставки рынка ГКО-ОФЗ для срока один год за одну неделю и темпами прироста некоторых индикаторов российского финансового рынка, оцененных по данным за период с 1 июня по 27 декабря 2000 г., позволило получить ряд свидетельств в пользу сделанного предположения.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19